AoPS Community

2014 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2014

www.artofproblemsolving.com/community/c939049
by parmenides51, MRF2017

1 Show that there are no positive real numbers x, y, z such $\left(12 x^{2}+y z\right)\left(12 y^{2}+x z\right)\left(12 z^{2}+x y\right)=$ $2014 x^{2} y^{2} z^{2}$.

2 You can determine all 4-ples (a, b, c, d) of real numbers, which solve the following equation sys-

$$
\text { tem }\left\{\begin{array}{l}
a b+a c=3 b+3 c \\
b c+b d=5 c+5 d \\
a c+c d=7 a+7 d \\
a d+b d=9 a+9 b
\end{array}\right.
$$

3 The sequence $\left(a_{n}\right)$ is defined with the recursion $a_{n+1}=5 a_{n}^{6}+3 a_{n-1}^{3}+a_{n-2}^{2}$ for $n \geq 2$ and the set of initial values $\left\{a_{0}, a_{1}, a_{2}\right\}=\{2013,2014,2015\}$. (That is, the initial values are these three numbers in any order.)
Show that the sequence contains no sixth power of a natural number.
4 For a point P in the interior of a triangle $A B C$ let D be the intersection of $A P$ with $B C$, let E be the intersection of $B P$ with $A C$ and let F be the intersection of $C P$ with $A B$.Furthermore let Q and R be the intersections of the parallel to $A B$ through P with the sides $A C$ and $B C$, respectively. Likewise, let S and T be the intersections of the
parallel to $B C$ through P with the sides $A B$ and $A C$, respectively.In a given triangle $A B C$, determine all points P for which the triangles $P R D, P E Q$ and $P T E$ have the same area.

