AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2006

www.artofproblemsolving.com/community/c939335
by littletush

1 Define a sequence of positive integers $\left\{a_{n}\right\}$ through the recursive formula: $a_{n+1}=a_{n}+b_{n}(n \geq$ 1), where b_{n} is obtained by rearranging the digits of a_{n} (in decimal representation) in reverse order (for example,if $a_{1}=250$,then $b_{1}=52, a_{2}=302$,and so on). Can a_{7} be a prime?

2 Let m, n be positive integers such that the equation (in respect of x)

$$
(x+m)(x+n)=x+m+n
$$

has at least one integer root. Prove that $\frac{1}{2} n<m<2 n$.
3 In a scalene triangle $A B C$, the bisectors of angle A, B intersect their corresponding sides at K, L respectively. I, O, H denote respectively the incenter,circumcenter and orthocenter of triangle $A B C$. Prove that A, B, K, L, O are concyclic iff $K L$ is the common tangent line of the circumcircles of the three triangles $A L I, B H I$ and $B K I$.

4 Given a segment $A B$ in the plane. Let C be another point in the same plane, H, I, G denote the orthocenter,incenter and centroid of triangle $A B C$. Find the locus of M for which A, B, H, I are concyclic.

5 Find all triples (p, q, r) of pairwise distinct primes such that

$$
p|q+r, q| r+2 p, r \mid p+3 q .
$$

6 Find all real solutions (x, y, z) of the system of equations:

$$
\left\{\begin{array}{l}
\tan ^{2} x+2 \cot ^{2} 2 y=1 \\
\tan ^{2} y+2 \cot ^{2} 2 z=1 \\
\tan ^{2} z+2 \cot ^{2} 2 x=1
\end{array}\right.
$$

