AoPS Community

2014 Finnish National High School Mathematics

Finnish National High School Mathematics Competition 2014
www.artofproblemsolving.com/community/c939578
by parmenides51

1 Determine the value of the expression $x^{2}+y^{2}+z^{2}$,
if $x+y+z=13, x y z=72$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{4}$.
2 The center of the circumcircle of the acute triangle $A B C$ is M, and the circumcircle of $A B M$ meets $B C$ and $A C$ at P and $Q(P \neq B)$. Show that the extension of the line segment $C M$ is perpendicular to $P Q$.

3 The points $P=(a, b)$ and $Q=(c, d)$ are in the first quadrant of the $x y$ plane, and a, b, c and d are integers satisfying $a<b, a<c, b<d$ and $c<d$. A route from point P to point Q is a broken line consisting of unit steps in the directions of the positive coordinate axes. An allowed route is a route not touching the line $x=y$. Tetermine the number of allowed routes.

4 The radius r of a circle with center at the origin is an odd integer.
There is a point $\left(p^{m}, q^{n}\right)$ on the circle, with p, q prime numbers and m, n positive integers. Determine r.

5 Determine the smallest number $n \in Z_{+}$, which can be written as $n=\Sigma_{a \in A} a^{2}$, where A is a finite set of positive integers and $\Sigma_{a \in A} a=2014$.
In other words: what is the smallest positive number which can be written as a sum of squares of different positive integers summing to 2014?

