AoPS Community

Dutch Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c939592
by parmenides51

1 Consider the equilateral triangle $A B C$ with $|B C|=|C A|=|A B|=1$.
On the extension of side $B C$, we define points A_{1} (on the same side as B) and A_{2} (on the same side as C) such that $\left|A_{1} B\right|=|B C|=\left|C A_{2}\right|=1$. Similarly, we define B_{1} and B_{2} on the extension of side $C A$ such that $\left|B_{1} C\right|=|C A|=\left|A B_{2}\right|=1$, and C_{1} and C_{2} on the extension of side $A B$ such that $\left|C_{1} A\right|=|A B|=\left|B C_{2}\right|=1$. Now the circumcentre of 4 ABC is also the centre of the circle that passes through the points $A_{1}, B_{2}, C_{1}, A_{2}, B_{1}$ and C_{2}.
Calculate the radius of the circle through $A_{1}, B_{2}, C_{1}, A_{2}, B_{1}$ and C_{2}.

2 Is it possible to partition the set $A=\{1,2,3, \ldots, 32,33\}$ into eleven subsets that contain three integers each, such that for every one of these eleven subsets, one of the integers is equal to the sum of the other two? If so, give such a partition, if not, prove that such a partition cannot exist.

3 Does there exist an integer having the form 444...4443 (all fours, and ending with a three) that is divisible by 13 ?
If so, give an integer having that form that is divisible by 13 , if not, prove that such an integer cannot exist.

4 Determine the number of integers a satisfying $1 \leq a \leq 100$ such that a^{a} is a perfect square. (And prove that your answer is correct.)
$5 \quad$ A triangle $A B C$ and a point P inside this triangle are given.
Define D, E and F as the midpoints of $A P, B P$ and $C P$, respectively. Furthermore, let R be the intersection of $A E$ and $B D, S$ the intersection of $B F$ and $C E$, and T the intersection of $C D$ and

$A F$.

Prove that the area of hexagon $D R E S F T$ is independent of the position of P inside the triangle.

