AoPS Community

Belarus Team Selection Test 2019

www.artofproblemsolving.com/community/c939986
by Vlados021, IndoMathXdZ, a1267ab, Neothehero, GorgonMathDota, Functional, a_simple_guy

- \quad Test 1
1.1 Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(f(n+1))=f(f(n))+2^{n-1}
$$

for any positive integer n ? (As usual, \mathbb{N} stands for the set of positive integers.)
(I. Gorodnin)
1.2 Points M and N are the midpoints of the sides $B C$ and $A D$, respectively, of a convex quadrilateral $A B C D$. Is it possible that

$$
A B+C D>\max (A M+D M, B N+C N) ?
$$

(Folklore)
1.3 Given the equation

$$
a^{b} \cdot b^{c}=c^{a}
$$

in positive integers a, b, and c.
(i) Prove that any prime divisor of a divides b as well.
(ii) Solve the equation under the assumption $b \geq a$.
(iii) Prove that the equation has infinitely many solutions.
(I. Voronovich)
1.4 Let the sequence $\left(a_{n}\right)$ be constructed in the following way:

$$
a_{1}=1, a_{2}=1, a_{n+2}=a_{n+1}+\frac{1}{a_{n}}, n=1,2, \ldots
$$

Prove that $a_{180}>19$.
(Folklore)

- \quad Test 2

2019 Belarus Team Selection Test

2.1 Given a quadratic trinomial $p(x)$ with integer coefficients such that $p(x)$ is not divisible by 3 for all integers x.
Prove that there exist polynomials $f(x)$ and $h(x)$ with integer coefficients such that

$$
p(x) \cdot f(x)+3 h(x)=x^{6}+x^{4}+x^{2}+1 .
$$

(I. Gorodnin)

2.2 Let O be the circumcenter and H be the orthocenter of an acute-angled triangle $A B C$. Point T is the midpoint of the segment $A O$. The perpendicular bisector of $A O$ intersects the line $B C$ at point S.
Prove that the circumcircle of the triangle $A S T$ bisects the segment $O H$.
(M. Berindeanu, RMC 2018 book)
2.3 1019 stones are placed into two non-empty boxes. Each second Alex chooses a box with an even amount of stones and shifts half of these stones into another box.
Prove that for each $k, 1 \leq k \leq 1018$, at some moment there will be a box with exactly k stones.

(O. Izhboldin)

2.4 Cells of 11×11 table are colored with n colors (each cell is colored with exactly one color). For each color, the total amount of the cells of this color is not less than 7 and not greater than 13. Prove that there exists at least one row or column which contains cells of at least four different colors.
(N. Sedrakyan)

- \quad Test 3
3.1 Determine all pairs (n, k) of distinct positive integers such that there exists a positive integer s for which the number of divisors of $s n$ and of $s k$ are equal.
3.2 A point T is chosen inside a triangle $A B C$. Let A_{1}, B_{1}, and C_{1} be the reflections of T in $B C, C A$, and $A B$, respectively. Let Ω be the circumcircle of the triangle $A_{1} B_{1} C_{1}$. The lines $A_{1} T, B_{1} T$, and $C_{1} T$ meet Ω again at A_{2}, B_{2}, and C_{2}, respectively. Prove that the lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent on Ω.

Proposed by Mongolia
3.3 Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n+1$ squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0 , and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of these stones and moves it to the right by at most k squares (the

2019 Belarus Team Selection Test

stone should say within the board). Sisyphus' aim is to move all n stones to square n.
Prove that Sisyphus cannot reach the aim in less than

$$
\left\lceil\frac{n}{1}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\cdots+\left\lceil\frac{n}{n}\right\rceil
$$

turns. (As usual, $\lceil x\rceil$ stands for the least integer not smaller than x.)

- \quad Test 4

4.1 A circle ω with radius 1 is given. A collection T of triangles is called good, if the following conditions hold:

- each triangle from T is inscribed in ω;
- no two triangles from T have a common interior point.

Determine all positive real numbers t such that, for each positive integer n, there exists a good collection of n triangles, each of perimeter greater than t.
4.2 Four positive integers x, y, z and t satisfy the relations

$$
x y-z t=x+y=z+t .
$$

Is it possible that both $x y$ and $z t$ are perfect squares?
4.3 Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of real numbers such that $a_{0}=0, a_{1}=1$, and for every $n \geq 2$ there exists $1 \leq k \leq n$ satisfying

$$
a_{n}=\frac{a_{n-1}+\cdots+a_{n-k}}{k} .
$$

Find the maximum possible value of $a_{2018}-a_{2017}$.

- \quad Test 5

5.1 A function $f: \mathbb{N} \rightarrow \mathbb{N}$, where \mathbb{N} is the set of positive integers, satisfies the following condition: for any positive integers m and $n(m>n)$ the number $f(m)-f(n)$ is divisible by $m-n$.
Is the function f necessarily a polynomial? (In other words, is it true that for any such function there exists a polynomial $p(x)$ with real coefficients such that $f(n)=p(n)$ for all positive integers n ?)
(Folklore)
5.2 Let $A A_{1}$ be the bisector of a triangle $A B C$. Points D and F are chosen on the line $B C$ such that A_{1} is the midpoint of the segment $D F$. A line l, different from $B C$, passes through A_{1} and intersects the lines $A B$ and $A C$ at points B_{1} and C_{1}, respectively.
Find the locus of the points of intersection of the lines $B_{1} D$ and $C_{1} F$ for all possible positions of l.
(M. Karpuk)
5.3 A polygon (not necessarily convex) on the coordinate plane is called plump if it satisfies the following conditions: • coordinates of vertices are integers; • each side forms an angle of 0°, 90°, or 45° with the abscissa axis; • internal angles belong to the interval $\left[90^{\circ}, 270^{\circ}\right]$.
Prove that if a square of each side length of a plump polygon is even, then such a polygon can be cut into several convex plump polygons.
(A. Yuran)

- \quad Test 6
6.1 Two circles Ω and Γ are internally tangent at the point B. The chord $A C$ of Γ is tangent to Ω at the point L, and the segments $A B$ and $B C$ intersect Ω at the points M and N. Let M_{1} and N_{1} be the reflections of M and N about the line $B L$; and let M_{2} and N_{2} be the reflections of M and N about the line $A C$. The lines $M_{1} M_{2}$ and $N_{1} N_{2}$ intersect at the point K.
Prove that the lines $B K$ and $A C$ are perpendicular.
(M. Karpuk)
6.2 The numbers $1,2, \ldots, 49,50$ are written on the blackboard. Ann performs the following operation: she chooses three arbitrary numbers a, b, c from the board, replaces them by their sum $a+b+c$ and writes $(a+b)(b+c)(c+a)$ to her notebook. Ann performs such operations until only two numbers remain on the board (in total 24 operations). Then she calculates the sum of all 24 numbers written in the notebook. Let A and B be the maximum and the minimum possible sums that Ann san obtain.
Find the value of $\frac{A}{B}$.

(I. Voronovich)

6.3 Let $n \geq 2018$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be pairwise distinct positive integers not exceeding $5 n$. Suppose that the sequence

$$
\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n}}{b_{n}}
$$

forms an arithmetic progression. Prove that the terms of the sequence are equal.

- \quad Test 7

7.1 The internal bisectors of angles $\angle D A B$ and $\angle B C D$ of a quadrilateral $A B C D$ intersect at the point X_{1}, and the external bisectors of these angles intersect at the point X_{2}. The internal bisectors of angles $\angle A B C$ and $\angle C D A$ intersect at the point Y_{1}, and the external bisectors of these angles intersect at the point Y_{2}.
Prove that the angle between the lines $X_{1} X_{2}$ and $Y_{1} Y_{2}$ equals the angle between the diagonals $A C$ and $B D$.

(A. Voidelevich)

7.2 Define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $a_{n}=2^{n}+2^{\lfloor n / 2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.
7.3 Given a positive integer n, determine the maximal constant C_{n} satisfying the following condition: for any partition of the set $\{1,2, \ldots, 2 n\}$ into two n-element subsets A and B, there exist labellings $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ of A and B, respectively, such that

$$
\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{n}-b_{n}\right)^{2} \geq C_{n} .
$$

(B. Serankou, M. Karpuk)

- \quad Test 8

8.1 Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=$ $\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.
8.2 Let \mathbb{Z} be the set of all integers. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the following conditions:

1. $f(f(x))=x f(x)-x^{2}+2$ for all $x \in \mathbb{Z}$;
2. f takes all integer values.
(I. Voronovich)
8.3 Prove that for $n>1, n$ does not divide $2^{n-1}+1$
