Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c940102
by GeronimoStilton, BOGTRO

- Challenger Division

1 At a math competition, a team of 8 students has 2 hours to solve 30 problems. If each problem needs to be solved by 2 students, on average how many minutes can a student spend on a problem?

2 A trifecta is an ordered triple of positive integers (a, b, c) with $a<b<c$ such that a divides b, b divides c, and c divides $a b$. What is the largest possible sum $a+b+c$ over all trifectas of three-digit integers?

3 Determine all real values of x for which

$$
\frac{1}{\sqrt{x}+\sqrt{x-2}}+\frac{1}{\sqrt{x}+\sqrt{x+2}}=\frac{1}{4} .
$$

4 How many six-letter words formed from the letters of AMC do not contain the substring AMC? (For example, AMAMMC has this property, but AAMCCC does not.)

5 What is the largest integer with distinct digits such that no two of its digits sum to a perfect square?

6 Seven two-digit integers form a strictly increasing arithmetic sequence. If the first and last terms of this sequence have the same set of digits, what is the sum of all possible medians of the sequence?

7 Triangle $A B C$ has $A B=8, A C=12, B C=10$. Let D be the intersection of the angle bisector of angle A with $B C$. Let M be the midpoint of $B C$. The line parallel to $A C$ passing through M intersects $A B$ at N. The line parallel to $A B$ passing through D intersects $A C$ at $P . M N$ and $D P$ intersect at E. Find the area of $A N E P$.

8 The Fibonacci sequence F_{0}, F_{1}, \ldots satisfies $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. Compute the number of triples (a, b, c) with $0 \leq a<b<c \leq 100$ for which F_{a}, F_{b}, F_{c} is an arithmetic progression.

9 How many decreasing sequences $a_{1}, a_{2}, \ldots, a_{2019}$ of positive integers are there such that $a_{1} \leq$ 2019^{2} and $a_{n}+n$ is even for each $1 \leq n \leq 2019$?

AoPS Community

10 Let a, b be positive real numbers with $a>b$. Compute the minimum possible value of the expression

$$
\frac{a^{2} b-a b^{2}+8}{a b-b^{2}} .
$$

11 Let $A B C$ be a right triangle with hypotenuse $A B$. Point E is on $A B$ with $A E=10 B E$, and point D is outside triangle $A B C$ such that $D C=D B$ and $\angle C D A=\angle B D E$. Let $[A B C]$ and $[B C D]$ denote the areas of triangles $A B C$ and $B C D$. Determine the value of $\frac{[B C D]}{[A B C]}$.

12 Determine the number of 10 -letter strings consisting of $A \mathrm{~s}, B \mathrm{~s}$, and $C \mathrm{~s}$ such that there is no B between any two $A \mathrm{~s}$.

13 The infinite sequence a_{0}, a_{1}, \ldots is given by $a_{1}=\frac{1}{2}, a_{n+1}=\sqrt{\frac{1+a_{n}}{2}}$. Determine the infinite product $a_{1} a_{2} a_{3} \cdots$.

14 In a circle of radius 10 , three congruent chords bound an equilateral triangle with side length 8. The endpoints of these chords form a convex hexagon. Compute the area of this hexagon.

15 Let $P(x)$ be a polynomial with integer coefficients such that

$$
P(\sqrt{2} \sin x)=-P(\sqrt{2} \cos x)
$$

for all real numbers x. What is the largest prime that must divide $P(2019)$?
16 What is the product of the factors of 30^{12} that are congruent to 1 modulo 7 ?
17 Tommy takes a 25-question true-false test. He answers each question correctly with independent probability $\frac{1}{2}$. Tommy earns bonus points for correct streaks: the first question in a streak is worth 1 point, the second question is worth 2 points, and so on. For instance, the sequence TFFTTTFT is worth $1+1+2+3+1=8$ points. Compute the expected value of Tommys score.

18 Two circles with radii 3 and 4 are externally tangent at P. Let $A \neq P$ be on the first circle and $B \neq P$ be on the second circle, and let the tangents at A and B to the respective circles intersect at Q. Given that $Q A=Q B$ and $A B$ bisects $P Q$, compute the area of $Q A B$.

19 Let n be the largest integer such that 5^{n} divides $12^{2015}+13^{2015}$. Compute the remainder when $\frac{12^{2015}+13^{2015}}{5^{n}}$ is divided by 1000 .

20 Kelvin the Frog lives in the 2-D plane. Each day, he picks a uniformly random direction (i.e. a uniformly random bearing $\theta \in[0,2 \pi]$) and jumps a mile in that direction. Let D be the number of miles Kelvin is away from his starting point after ten days. Determine the expected value of D^{4}.

21 Let $A B C D$ be a rectangle satisfying $A B=C D=24$, and let E and G be points on the extension of $B A$ past A and the extension of $C D$ past D respectively such that $A E=1$ and $D G=3$.

Suppose that there exists a unique pair of points (F, H) on lines $B C$ and $D A$ respectively such that H is the orthocenter of $\triangle E F G$. Find the sum of all possible values of $B C$.

22 Find the largest real number λ such that
$a_{1}^{2}+\cdots+a_{2019}^{2} \geq a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{1008} a_{1009}+\lambda a_{1009} a_{1010}+\lambda a_{1010} a_{1011}+a_{1011} a_{1012}+\cdots+a_{2018} a_{2019}$
for all real numbers a_{1}, \ldots, a_{2019}. The coefficients on the right-hand side are 1 for all terms except $a_{1009} a_{1010}$ and $a_{1010} a_{1011}$, which have coefficient λ.

23 For Kelvin the Frog's birthday, Alex the Kat gives him one brick weighing x pounds, two bricks weighing y pounds, and three bricks weighing z pounds, where x, y, z are positive integers of Kelvin the Frog's choice.

Kelvin the Frog has a balance scale. By placing some combination of bricks on the scale (possibly on both sides), he wants to be able to balance any item of weight $1,2, \ldots, N$ pounds. What is the largest N for which Kelvin the Frog can succeed?

24 Let $A B C$ be a triangle with $\angle A=60^{\circ}, A B=12, A C=14$. Point D is on $B C$ such that $\angle B A D=$ $\angle C A D$. Extend $A D$ to meet the circumcircle at M. The circumcircle of $B D M$ intersects $A B$ at $K \neq B$, and line $K M$ intersects the circumcircle of $C D M$ at $L \neq M$. Find $\frac{K M}{L M}$.

25 Determine the remainder when

$$
\prod_{i=1}^{2016}\left(i^{4}+5\right)
$$

is divided by 2017.
26 The permutations of $O L Y M P I A D$ are arranged in lexicographical order, with $A D I L M O P Y$ being arrangement 1 and its reverse being arrangement 40320. Yu Semo and Yu Sejmo both choose a uniformly random arrangement. The immature Yu Sejmo exclaims, "My fourth letter is $L!$ " while Yu Semo remains silent. Given this information, let E_{1} be the expected arrangement number of Yu Semo and E_{2} be the expected arrangement number of Yu Sejmo. Compute E_{2} E_{1}.

27 For an integer n, define $f(n)$ to be the greatest integer k such that 2^{k} divides $\binom{n}{m}$ for some $0 \leq m \leq n$. Compute $f(1)+f(2)+\cdots+f(2048)$.

28 Alex the Kat plays the following game. First, he writes the number 27000 on a blackboard. Each minute, he erases the number on the blackboard and replaces it with a number chosen uniformly randomly from its positive divisors, including itself. Find the probability that, after 2019 minutes, the number on the blackboard is 1.

29 Let n be a positive integer, and let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be real numbers. Alex the Kat writes down the n^{2} numbers of the form $\min \left(a_{i}, a_{j}\right)$, and Kelvin the Frog writes down the n^{2} numbers of the form $\max \left(b_{i}, b_{j}\right)$.
Let x_{n} be the largest possible size of the set $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$, such that Alex the Kat and Kelvin the Frog write down the same collection of numbers. Determine the number of distinct integers in the sequence $x_{1}, x_{2}, \ldots, x_{10,000}$.

30 Let $A B C$ be a triangle with $B C=a, C A=b$, and $A B=c$. The A-excircle is tangent to $\overline{B C}$ at A_{1}; points B_{1} and C_{1} are similarly defined.

Determine the number of ways to select positive integers a, b, c such that

- the numbers $-a+b+c, a-b+c$, and $a+b-c$ are even integers at most 100 , and
- the circle through the midpoints of $\overline{A A_{1}}, \overline{B B_{1}}$, and $\overline{C C_{1}}$ is tangent to the incircle of $\triangle A B C$.
- Premier Division

1 Kelvin the Frog and Alex the Kat are playing a game on an initially empty blackboard. Kelvin begins by writing a digit. Then, the players alternate inserting a digit anywhere into the number currently on the blackboard, including possibly a leading zero (e.g. 12 can become 123, 142, 512, 012 , etc.). Alex wins if the blackboard shows a perfect square at any time, and Kelvin's goal is prevent Alex from winning. Does Alex have a winning strategy?

2 Let $n \geq 2$ be an even integer. Find the maximum integer k (in terms of n) such that 2^{k} divides $\binom{n}{m}$ for some $0 \leq m \leq n$.

3 Let $A B C$ be a scalene triangle. The incircle of $A B C$ touches $\overline{B C}$ at D. Let P be a point on $\overline{B C}$ satisfying $\angle B A P=\angle C A P$, and M be the midpoint of $\overline{B C}$. Define Q to be on $\overline{A M}$ such that $\overline{P Q} \perp \overline{A M}$. Prove that the circumcircle of $\triangle A Q D$ is tangent to $\overline{B C}$.

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$
f(f(x)+y)^{2}=(x-y)(f(x)-f(y))+4 f(x) f(y) .
$$

5 The number 2019 is written on a blackboard. Every minute, if the number a is written on the board, Evan erases it and replaces it with a number chosen from the set

$$
\{0,1,2, \ldots,\lceil 2.01 a\rceil\}
$$

uniformly at random. Is there an integer N such that the board reads 0 after N steps with at least 99% probability?

6 A mirrored polynomial is a polynomial f of degree 100 with real coefficients such that the x^{50} coefficient of f is 1 , and $f(x)=x^{100} f(1 / x)$ holds for all real nonzero x. Find the smallest real constant C such that any mirrored polynomial f satisfying $f(1) \geq C$ has a complex root z obeying $|z|=1$.

7 Let $A X B Y$ be a convex quadrilateral. The incircle of $\triangle A X Y$ has center I_{A} and touches $\overline{A X}$ and $\overline{A Y}$ at A_{1} and A_{2} respectively. The incircle of $\triangle B X Y$ has center I_{B} and touches $\overline{B X}$ and $\overline{B Y}$ at B_{1} and B_{2} respectively. Define $P=\overline{X I_{A}} \cap \overline{Y I_{B}}, Q=\overline{X I_{B}} \cap \overline{Y I_{A}}$, and $R=\overline{A_{1} B_{1}} \cap \overline{A_{2} B_{2}}$.

- Prove that if $\angle A X B=\angle A Y B$, then P, Q, R are collinear.
- Prove that if there exists a circle tangent to all four sides of $A X B Y$, then P, Q, R are collinear.
$8 \quad$ Find all pairs of positive integers (m, n) such that $\left(2^{m}-1\right)\left(2^{n}-1\right)$ is a perfect square.

