AoPS Community

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2018

www.artofproblemsolving.com/community/c941052
by parmenides51
$1 \quad$ For an odd number n , we write $n!!=n \cdot(n-2) \ldots 3 \cdot 1$.
How many different residues modulo 1000 do you get from $n!$ for $n=1,3,5$, ?
2 The circumcentre of a triangle $A B C$ is called O.
The points A^{\prime}, B^{\prime} and C^{\prime} are the reflections of O in $B C, C A$, and $A B$, respectively. Show that the three lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ meet in a common point.

3a Find all polynomials P such that $P(x)+3 P(x+2)=3 P(x+1)+P(x+3)$ for all real numbers x.

3b Find all real functions f defined on the real numbers except zero, satisfying $f(2019)=1$ and $f(x) f(y)+f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right)=2 f(x y)$ for all $x, y \neq 0$

4 Find all polynomials P such that $P(x)+\binom{2018}{2} P(x+2)+\ldots+\binom{2018}{2106} P(x+2016)+P(x+2018)=$ $=\binom{2018}{1} P(x+1)+\binom{2018}{3} P(x+3)+\ldots+\binom{2018}{2105} P(x+2015)+\binom{2018}{2107} P(x+2017)$ for all real numbers x.

