

## **AoPS Community**

## 2017 Abels Math Contest (Norwegian MO) Final

## Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2017

www.artofproblemsolving.com/community/c941065 by parmenides51

| 1a | Find all functions $f : R \to R$ which satisfy $f(x)f(y) = f(xy) + xy$ for all $x, y \in R$ .                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1b | Find all functions $f : R \to R$ which satisfy $f(x)f(y) = f(x+y) + xy$ for all $x, y \in R$ .                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2  | Let the sequence an be defined by $a_0 = 2$ , $a_1 = 15$ , and $a_{n+2} = 15a_{n+1} + 16a_n$ for $n \ge 0$ .<br>Show that there are infinitely many integers $k$ such that $269 a_k$ .                                                                                                                                                                                                                                                                                                              |
| 3a | Nils has a telephone number with eight different digits.<br>He has made $28$ cards with statements of the type The digit $a$ occurs earlier than the digit $b$ in<br>my telephone number one for each pair of digits appearing in his number.<br>How many cards can Nils show you without revealing his number?                                                                                                                                                                                     |
| 3b | In an infinite grid of regular triangles, Niels and Henrik are playing a game they made up.<br>Every other time, Niels picks a triangle and writes × in it, and every other time, Henrik picks<br>a triangle where he writes a <i>o</i> . If one of the players gets four in a row in some direction (see<br>figure), he wins the game.<br>Determine whether one of the players can force a victory.<br>https://cdn.artofproblemsolving.com/attachments/6/e/5e80f60f110a81a74268fded7fd75a71<br>png |
| 4  | Let $a > 0$ and $0 < \alpha < \pi$ be given. Let $ABC$ be a triangle with $BC = a$ and $\angle BAC = \alpha$ , and call the cicumcentre $O$ , and the orthocentre $H$ . The point $P$ lies on the ray from $A$ through $O$ . Let $S$ be the mirror image of $P$ through $AC$ , and $T$ the mirror image of $P$ through $AB$ . Assume                                                                                                                                                                |

that SATH is cyclic. Show that the length AP depends only on a and  $\alpha$ .

Act of Problem Solving is an ACS WASC Accredited School.