AoPS Community

Mexico National Olympiad 2018

www.artofproblemsolving.com/community/c942639
by parmenides51, juckter, plagueis

- Day 1

1 Let A and B be two points on a line ℓ, M the midpoint of $A B$, and X a point on segment $A B$ other than M. Let Ω be a semicircle with diameter $A B$. Consider a point P on Ω and let Γ be the circle through P and X that is tangent to $A B$. Let Q be the second intersection point of Ω and Γ. The internal angle bisector of $\angle P X Q$ intersects Γ at a point R. Let Y be a point on ℓ such that $R Y$ is perpendicular to ℓ. Show that $M X>X Y$

2 For each positive integer m, we define L_{m} as the figure that is obtained by overlapping two $1 \times m$ and $m \times 1$ rectangles in such a way that they coincide at the 1×1 square at their ends, as shown in the figure.

Using some figures $L_{m_{1}}, L_{m_{2}}, \ldots, L_{m_{k}}$, we cover an $n \times n$ board completely, in such a way that the edges of the figure coincide with lines in the board. Among all possible coverings of the board, find the minimal possible value of $m_{1}+m_{2}+\cdots+m_{k}$.

Note: In covering the board, the figures may be rotated or reflected, and they may overlap or not be completely contained within the board.

3 A sequence $a_{2}, a_{3}, \ldots, a_{n}$ of positive integers is said to be campechana, if for each i such that $2 \leq i \leq n$ it holds that exactly a_{i} terms of the sequence are relatively prime to i. We say that the size of such a sequence is $n-1$. Let $m=p_{1} p_{2} \ldots p_{k}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are pairwise distinct primes and $k \geq 2$. Show that there exist at least two different campechana sequences of size m.

- Day 2

4 Let $n \geq 2$ be an integer. For each k-tuple of positive integers $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{1}+a_{2}+$ $\cdots+a_{k}=n$, consider the sums $S_{i}=1+2+\ldots+a_{i}$ for $1 \leq i \leq k$. Determine, in terms of n, the maximum possible value of the product $S_{1} S_{2} \cdots S_{k}$.
Proposed by Misael Pelayo

5 Let $n \geq 5$ an integer and consider a regular n-gon. Initially, Nacho is situated in one of the vertices of the n-gon, in which he puts a flag. He will start moving clockwise. First, he moves one position and puts another flag, then, two positions and puts another flag, etcetera, until he finally moves $n-1$ positions and puts a flag, in such a way that he puts n flags in total. ¿For which values of n, Nacho will have put a flag in each of the n vertices?

6 Let $A B C$ be an acute-angled triangle with circumference Ω. Let the angle bisectors of $\angle B$ and $\angle C$ intersect Ω again at M and N. Let I be the intersection point of these angle bisectors. Let M^{\prime} and N^{\prime} be the respective reflections of M and N in $A C$ and $A B$. Prove that the center of the circle passing through $I, M^{\prime}, N^{\prime}$ lies on the altitude of triangle $A B C$ from A.
Proposed by Victor Domínguez and Ariel García

