

AoPS Community

2008 Abels Math Contest (Norwegian MO) Final

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2008 www.artofproblemsolving.com/community/c943903 by parmenides51	
1	Let $s(n) = \frac{1}{6}n^3 - \frac{1}{2}n^2 + \frac{1}{3}n$. (a) Show that $s(n)$ is an integer whenever n is an integer. (b) How many integers n with $0 < n \le 2008$ are such that $s(n)$ is divisible by 4?
2a	We wish to lay down boards on a floor with width B in the direction across the boards. We have n boards of width b , and B/b is an integer, and $nb \leq B$. There are enough boards to cover the floor, but the boards may have different lengths. Show that we can cut the boards in such a way that every board length on the floor has at most one join where two boards meet end to end. https://cdn.artofproblemsolving.com/attachments/f/f/24ce8ae05d85fd522da0e18c0bb8017ca3c8epng
2b	A and B play a game on a square board consisting of $n \times n$ white tiles, where $n \ge 2$. A moves first, and the players alternate taking turns. A move consists of picking a square consisting of 2×2 or 3×3 white tiles and colouring all these tiles black. The first player who cannot find any such squares has lost. Show that A can always win the game if A plays the game right.
3	a) Let x and y be positive numbers such that $x + y = 2$. Show that $\frac{1}{x} + \frac{1}{y} \le \frac{1}{x^2} + \frac{1}{y^2}$ b) Let x, y and z be positive numbers such that $x + y + z = 2$.
	Show that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{9}{4} \le \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}$
4a	Three distinct points A, B , and C lie on a circle with centre at O . The triangles AOB, BOC , and COA have equal area. What are the possible magnitudes of the angles of the triangle ABC ?
4b	A point D lies on the side BC , and a point E on the side AC , of the triangle ABC , and BD and AE have the same length. The line through the centres of the circumscribed circles of the triangles ADC and BEC crosses AC in K and BC in L . Show that KC and LC have the same length.

🐼 AoPS Online 🐼 AoPS Academy 🔯 AoPS 🕬

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.