AoPS Community

2007 Abels Math Contest (Norwegian MO) Final

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2007

www.artofproblemsolving.com/community/c943924
by parmenides51

1 We consider the sum of the digits of a positive integer.
For example, the sum of the digits of 2007 is equal to 9 , since $2+0+0+7=9$.
(a) How many integers n, where $0<n<100000$, have an even sum of digits?
(b) How many integers n, where $0<n<100000$, have a sum of digits that is less than or equal to 22 ?

2 The vertices of a convex pentagon $A B C D E$ lie on a circle γ_{1}.
The diagonals $A C, C E, E B, B D$, and $D A$ are tangents to another circle γ_{2} with the same centre as γ_{1}.
(a) Show that all angles of the pentagon $A B C D E$ have the same size and that all edges of the pentagon have the same length.
(b) What is the ratio of the radii of the circles γ_{1} and γ_{2} ? (The answer should be given in terms of integers, the four basic arithmetic operations and extraction of roots only.)

3 (a) Let x and y be two positive integers such that $\sqrt{x}+\sqrt{y}$ is an integer. Show that \sqrt{x} and \sqrt{y} are both integers.
(b) Find all positive integers x and y such that $\sqrt{x}+\sqrt{y}=\sqrt{2007}$.
$4 \quad$ Let a, b and c be integers such that $a+b+c=0$.
(a) Show that $a^{4}+b^{4}+c^{4}$ is divisible by $a^{2}+b^{2}+c^{2}$.
(b) Show that $a^{100}+b^{100}+c^{100}$ is divisible by $a^{2}+b^{2}+c^{2}$.

