

AoPS Community

2007 Abels Math Contest (Norwegian MO) Final

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2007

www.artofproblemsolving.com/community/c943924 by parmenides51

1	We consider the sum of the digits of a positive integer. For example, the sum of the digits of 2007 is equal to 9, since $2 + 0 + 0 + 7 = 9$. (a) How many integers n , where $0 < n < 100000$, have an even sum of digits? (b) How many integers n , where $0 < n < 100000$, have a sum of digits that is less than or equal to 22?
2	 The vertices of a convex pentagon <i>ABCDE</i> lie on a circle γ₁. The diagonals <i>AC</i>, <i>CE</i>, <i>EB</i>, <i>BD</i>, and <i>DA</i> are tangents to another circle γ₂ with the same centre as γ₁. (a) Show that all angles of the pentagon <i>ABCDE</i> have the same size and that all edges of the pentagon have the same length. (b) What is the ratio of the radii of the circles γ₁ and γ₂? (The answer should be given in terms of integers, the four basic arithmetic operations and extraction of roots only.)
3	(a) Let x and y be two positive integers such that $\sqrt{x} + \sqrt{y}$ is an integer. Show that \sqrt{x} and \sqrt{y} are both integers. (b) Find all positive integers x and y such that $\sqrt{x} + \sqrt{y} = \sqrt{2007}$.
4	Let a, b and c be integers such that $a + b + c = 0$. (a) Show that $a^4 + b^4 + c^4$ is divisible by $a^2 + b^2 + c^2$. (b) Show that $a^{100} + b^{100} + c^{100}$ is divisible by $a^2 + b^2 + c^2$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

1