AoPS Community

Dutch Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c945641
by parmenides51

1 Determine all triples of positive integers (a, b, n) that satisfy the following equation: $a!+b!=2^{n}$

2 Let $A B C$ be a triangle.
Points P and Q lie on side $B C$ and satisfy $|B P|=|P Q|=|Q C|=\frac{1}{3}|B C|$.
Points R and S lie on side $C A$ and satisfy $|C R|=|R S|=|S A|=13|C A|$.
Finally, points T and U lie on side $A B$ and satisfy $|A T|=|T U|=|U B|=\frac{1}{3}|A B|$.
Points P, Q, R, S, T and U turn out to lie on a common circle.
Prove that $A B C$ is an equilateral triangle.
3 In a tournament among six teams, every team plays against each other team exactly once. When a team wins, it receives 3 points and the losing team receives 0 points. If the game is a draw, the two teams receive 1 point each.
Can the final scores of the six teams be six consecutive numbers $a, a+1, \ldots, a+5$? If so, determine all values of a for which this is possible.

4 Determine all pairs of positive real numbers (a, b) with $a>b$ that satisfy the following equations: $a \sqrt{a}+b \sqrt{b}=134$ and $a \sqrt{b}+b \sqrt{a}=126$.

5 The number devil has coloured the integer numbers: every integer is coloured either black or white.
The number 1 is coloured white. For every two white numbers a and b (a and b are allowed to be equal) the numbers $a-b$ and $a+\mathrm{b}$ have di fferent colours.
Prove that 2011 is coloured white.

