AoPS Community

Finnish National High School Mathematics Competition 2017

www.artofproblemsolving.com/community/c947599
by parmenides51

1 By dividing the integer m by the integer $n, 22$ is the quotient and 5 the remainder.
As the division of the remainder with n continues, the new quotient is 0.4 and the new remainder is 0.2 .
Find m and n.
2 Determine $x^{2}+y^{2}$ and $x^{4}+y^{4}$, when $x^{3}+y^{3}=2$ and $x+y=1$
$3 \quad$ Consider positive integers m and n for which $m>n$ and the number $22220038^{m}-22220038^{n}$ has are eight zeros at the end. Show that $n>7$.
$4 \quad$ Let m be a positive integer.
Two players, Axel and Elina play the game HAUKKU (m) proceeds as follows:
Axel starts and the players choose integers alternately. Initially, the set of integers is the set of positive divisors of a positive integer m. The player in turn chooses one of the remaining numbers, and removes that number and all of its multiples from the list of selectable numbers. A player who has to choose number 1, loses. Show that the beginner player, Axel, has a winning strategy in the HAUKKU (m) game for all $m \in Z_{+}$.

PS. As member Loppukilpailija noted, it should be written $m>1$, as the statement does not hold for $m=1$.
$5 \quad$ Let A and B be two arbitrary points on the circumference of the circle such that $A B$ is not the diameter of the circle. The tangents to the circle drawn at points A and B meet at T. Next, choose the diameter $X Y$ so that the segments $A X$ and $B Y$ intersect. Let this be the intersection of Q. Prove that the points A, B, and Q lie on a circle with center T.

