HMMT Invitational Competition 2015

www.artofproblemsolving.com/community/c953532
by va2010, math154

1
Let S be the set of positive integers n such that the inequality

$$
\phi(n) \cdot \tau(n) \geq \sqrt{\frac{n^{3}}{3}}
$$

holds, where $\phi(n)$ is the number of positive integers $k \leq n$ that are relatively prime to n, and $\tau(n)$ is the number of positive divisors of n. Prove that S is finite.

2 Let m, n be positive integers with $m \geq n$. Let S be the set of pairs (a, b) of relatively prime positive integers such that $a, b \leq m$ and $a+b>m$.

For each pair $(a, b) \in S$, consider the nonnegative integer solution (u, v) to the equation $a u-$ $b v=n$ chosen with $v \geq 0$ minimal, and let $I(a, b)$ denote the (open) interval ($v / a, u / b$).

Prove that $I(a, b) \subseteq(0,1)$ for every $(a, b) \in S$, and that any fixed irrational number $\alpha \in(0,1)$ lies in $I(a, b)$ for exactly n distinct pairs $(a, b) \in S$.
Victor Wang, inspired by 2013 ISL N7
3
Let M be a 2014×2014 invertible matrix, and let $\mathcal{F}(M)$ denote the set of matrices whose rows are a permutation of the rows of M. Find the number of matrices $F \in \mathcal{F}(M)$ such that $\operatorname{det}(M+F) \neq 0$.

4 Prove that there exists a positive integer N such that for any positive integer $n \geq N$, there are at least 2015 non-empty subsets S of $\left\{n^{2}+1, n^{2}+2, \ldots, n^{2}+3 n\right\}$ with the property that the product of the elements of S is a perfect square.

5 Let $\omega=e^{2 \pi i / 5}$ be a primitive fifth root of unity. Prove that there do not exist integers a, b, c, d, k with $k>1$ such that

$$
\left(a+b \omega+c \omega^{2}+d \omega^{3}\right)^{k}=1+\omega .
$$

Carl Lian

