HMMT Invitational Competition 2014

www.artofproblemsolving.com/community/c953537
by Wave-Particle

1 Consider a regular n-gon with $n>3$, call a line acceptable if it passes through the interior of this n-gon. Draw m different acceptable lines, so that the n-gon is divided into several smaller polygons.
(a) Prove that there exists an m, depending only on n, such that any collection of m acceptable lines results in one of the smaller polygons having 3 or 4 sides.
(b) Find the smallest possible m which guarantees that at least one of the smaller polygons will have 3 or 4 sides.

22014 triangles have non-overlapping interiors contained in a circle of radius 1 . What is the largest possible value of the sum of their areas?

3 Fix positive integers m and n. Suppose that $a_{1}, a_{2}, \ldots, a_{m}$ are reals, and that pairwise distinct vectors $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ satisfy

$$
\sum_{j \neq i} a_{j} \frac{v_{j}-v_{i}}{\left\|v_{j}-v_{i}\right\|^{3}}=0
$$

for $i=1,2, \ldots, m$.
Prove that

$$
\sum_{1 \leq i<j \leq m} \frac{a_{i} a_{j}}{\left\|v_{j}-v_{i}\right\|}=0 .
$$

$4 \quad$ Let ω be a root of unity and f be a polynomial with integer coefficients. Show that if $|f(\omega)|=1$, then $f(\omega)$ is also a root of unity.
$5 \quad$ Let n be a positive integer, and let A and B be $n \times n$ matrices with complex entries such that $A^{2}=B^{2}$. Show that there exists an $n \times n$ invertible matrix S with complex entries that satisfies $S(A B-B A)=(B A-A B) S$.

