

AoPS Community

IberoAmerican 2019

www.artofproblemsolving.com/community/c958725 by parmenides51, Jafet98, plagueis, Pathological

– Day I	-	Day	1
---------	---	-----	---

- **1** For each positive integer n, let s(n) be the sum of the squares of the digits of n. For example, $s(15) = 1^2 + 5^2 = 26$. Determine all integers $n \ge 1$ such that s(n) = n.
- **2** Determine all polynomials P(x) with degree $n \ge 1$ and integer coefficients so that for every real number x the following condition is satisfied

$$P(x) = (x - P(0))(x - P(1))(x - P(2)) \cdots (x - P(n - 1))$$

- **3** Let Γ be the circumcircle of triangle *ABC*. The line parallel to *AC* passing through *B* meets Γ at D ($D \neq B$), and the line parallel to *AB* passing through *C* intersects Γ to *E* ($E \neq C$). Lines *AB* and *CD* meet at *P*, and lines *AC* and *BE* meet at *Q*. Let *M* be the midpoint of *DE*. Line *AM* meets Γ at *Y* ($Y \neq A$) and line *PQ* at *J*. Line *PQ* intersects the circumcircle of triangle *BCJ* at *Z* ($Z \neq J$). If lines *BQ* and *CP* meet each other at *X*, show that *X* lies on the line *YZ*.
- Day 2
- **4** Let ABCD be a trapezoid with $AB \parallel CD$ and inscribed in a circumference Γ . Let P and Q be two points on segment AB (A, P, Q, B appear in that order and are distinct) such that AP = QB. Let E and F be the second intersection points of lines CP and CQ with Γ , respectively. Lines AB and EF intersect at G. Prove that line DG is tangent to Γ .
- 5 Don Miguel places a token in one of the $(n+1)^2$ vertices determined by an $n \times n$ board. A *move* consists of moving the token from the vertex on which it is placed to an adjacent vertex which is at most $\sqrt{2}$ away, as long as it stays on the board. A *path* is a sequence of moves such that the token was in each one of the $(n+1)^2$ vertices exactly once. What is the maximum number of diagonal moves (those of length $\sqrt{2}$) that a path can have in total?
- **6** Let $a_1, a_2, \ldots, a_{2019}$ be positive integers and P a polynomial with integer coefficients such that, for every positive integer n,

P(n) divides $a_1^n + a_2^n + \dots + a_{2019}^n$.

Prove that P is a constant polynomial.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱 🕅

Art of Problem Solving is an ACS WASC Accredited School.