AoPS Community

HMMT Invitational Competition 2013

www.artofproblemsolving.com/community/c962253
by parmenides51, mapletree14

1 Let S be a set of size n, and k be a positive integer. For each $1 \leq i \leq k n$, there is a subset $S_{i} \subset S$ such that $\left|S_{i}\right|=2$. Furthermore, for each $e \in S$, there are exactly $2 k$ values of i such that $e \in S_{i}$. Show that it is possible to choose one element from S_{i} for each $1 \leq i \leq k n$ such that every element of S is chosen exactly k times.

2 Find all functions $f: R \rightarrow R$ such that, for all real numbers x, y,

$$
(x-y)(f(x)-f(y))=f(x-f(y)) f(f(x)-y) .
$$

3 Triangle $A B C$ is inscribed in a circle ω such that $\angle A=60^{\circ}$ and $\angle B=75^{\circ}$. Let the bisector of angle A meet $B C$ and ω at E and D, respectively. Let the reflections of A across D and C be D^{\prime} and C^{\prime}, respectively. If the tangent to ω at A meets line $B C$ at P, and the circumcircle of $A P D^{\prime}$ meets line $A C$ at $F \neq A$, prove that the circumcircle of $C^{\prime} F E$ is tangent to $B C$ at E.
$4 \quad$ A subset $U \subset R$ is open if for any $x \in U$, there exist real numbers a, b such that $x \in(a, b) \subset U$. Suppose $S \subset R$ has the property that any open set intersecting (0,1) also intersects S. Let T be a countable collection of open sets containing S. Prove that the intersection of all of the sets of T is not a countable subset of R.
(A set Γ is countable if there exists a bijective function $f: \Gamma \rightarrow Z$.)
5 I'd really appreciate help on this.
(a) Given a set X of points in the plane, let $f_{X}(n)$ be the largest possible area of a polygon with at most n vertices, all of which are points of X. Prove that if m, n are integers with $m \geq n>2$ then $f_{X}(m)+f_{X}(n) \geq f_{X}(m+1)+f_{X}(n-1)$.
(b) Let P_{0} be a 1×2 rectangle (including its interior) and inductively define the polygon P_{i} to be the result of folding P_{i-1} over some line that cuts P_{i-1} into two connected parts. The diameter of a polygon P_{i} is the maximum distance between two points of P_{i}. Determine the smallest possible diameter of P_{2013}.

