AoPS Community

6th IGO

www.artofproblemsolving.com/community/c963062
by parmenides51, Dadgarnia

- Elementary

1 There is a table in the shape of a 8×5 rectangle with four holes on its corners. After shooting a ball from points A, B and C on the shown paths, will the ball fall into any of the holes after 6 reflections? (The ball reflects with the same angle after contacting the table edges.)
http://s5.picofile.com/file/8372960750/E01.png
Proposed by Hirad Alipanah
2 As shown in the figure, there are two rectangles $A B C D$ and $P Q R D$ with the same area, and with parallel corresponding edges. Let points N, M and T be the midpoints of segments $Q R$, $P C$ and $A B$, respectively. Prove that points N, M and T lie on the same line.
http://s4.picofile.com/file/8372959484/E02.png
Proposed by Morteza Saghafian
3 There are $n>2$ lines on the plane in general position; Meaning any two of them meet, but no three are concurrent. All their intersection points are marked, and then all the lines are removed, but the marked points are remained. It is not known which marked point belongs to which two lines. Is it possible to know which line belongs where, and restore them all?

Proposed by Boris Frenkin - Russia

4 Quadrilateral $A B C D$ is given such that

$$
\angle D A C=\angle C A B=60^{\circ},
$$

and

$$
A B=B D-A C .
$$

Lines $A B$ and $C D$ intersect each other at point E. Prove that

$$
\angle A D B=2 \angle B E C .
$$

Proposed by Iman Maghsoudi

AoPS Community

$5 \quad$ For a convex polygon (i.e. all angles less than 180°) call a diagonal bisector if its bisects both area and perimeter of the polygon. What is the maximum number of bisector diagonals for a convex pentagon?

Proposed by Morteza Saghafian

- Intermediate

1 Two circles ω_{1} and ω_{2} with centers O_{1} and O_{2} respectively intersect each other at points A and B, and point O_{1} lies on ω_{2}. Let P be an arbitrary point lying on ω_{1}. Lines $B P, A P$ and $O_{1} O_{2}$ cut ω_{2} for the second time at points X, Y and C, respectively. Prove that quadrilateral $X P Y C$ is a parallelogram.

Proposed by Iman Maghsoudi
2 Find all quadrilaterals $A B C D$ such that all four triangles $D A B, C D A, B C D$ and $A B C$ are similar to one-another.

Proposed by Morteza Saghafian

3 Three circles ω_{1}, ω_{2} and ω_{3} pass through one common point, say P. The tangent line to ω_{1} at P intersects ω_{2} and ω_{3} for the second time at points $P_{1,2}$ and $P_{1,3}$, respectively. Points $P_{2,1}, P_{2,3}$, $P_{3,1}$ and $P_{3,2}$ are similarly defined. Prove that the perpendicular bisector of segments $P_{1,2} P_{1,3}$, $P_{2,1} P_{2,3}$ and $P_{3,1} P_{3,2}$ are concurrent.
Proposed by Mahdi Etesamifard
4 Let $A B C D$ be a parallelogram and let K be a point on line $A D$ such that $B K=A B$. Suppose that P is an arbitrary point on $A B$, and the perpendicular bisector of $P C$ intersects the circumcircle of triangle $A P D$ at points X, Y. Prove that the circumcircle of triangle $A B K$ passes through the orthocenter of triangle $A X Y$.
Proposed by Iman Maghsoudi
$5 \quad$ Let $A B C$ be a triangle with $\angle A=60^{\circ}$. Points E and F are the foot of angle bisectors of vertices B and C respectively. Points P and Q are considered such that quadrilaterals $B F P E$ and $C E Q F$ are parallelograms. Prove that $\angle P A Q>150^{\circ}$. (Consider the angle $P A Q$ that does not contain side $A B$ of the triangle.)

Proposed by Alireza Dadgarnia

- Advanced

$1 \quad$ Circles ω_{1} and ω_{2} intersect each other at points A and B. Point C lies on the tangent line from A to ω_{1} such that $\angle A B C=90^{\circ}$. Arbitrary line ℓ passes through C and cuts ω_{2} at points P and
Q. Lines $A P$ and $A Q$ cut ω_{1} for the second time at points X and Z respectively. Let Y be the foot of altitude from A to ℓ. Prove that points X, Y and Z are collinear.

Proposed by Iman Maghsoudi
2 Is it true that in any convex n-gon with $n>3$, there exists a vertex and a diagonal passing through this vertex such that the angles of this diagonal with both sides adjacent to this vertex are acute?

Proposed by Boris Frenkin - Russia

3 Circles ω_{1} and ω_{2} have centres O_{1} and O_{2}, respectively. These two circles intersect at points X and $Y . A B$ is common tangent line of these two circles such that A lies on ω_{1} and B lies on ω_{2}. Let tangents to ω_{1} and ω_{2} at X intersect $O_{1} O_{2}$ at points K and L, respectively. Suppose that line $B L$ intersects ω_{2} for the second time at M and line $A K$ intersects ω_{1} for the second time at N. Prove that lines $A M, B N$ and $O_{1} O_{2}$ concur.
Proposed by Dominik Burek - Poland
4 Given an acute non-isosceles triangle $A B C$ with circumcircle $\Gamma . M$ is the midpoint of segment $B C$ and N is the midpoint of arc $B C$ of Γ (the one that doesn't contain A). X and Y are points on Γ such that $B X\|C Y\| A M$. Assume there exists point Z on segment $B C$ such that circumcircle of triangle $X Y Z$ is tangent to $B C$. Let ω be the circumcircle of triangle $Z M N$. Line $A M$ meets ω for the second time at P. Let K be a point on ω such that $K N \| A M, \omega_{b}$ be a circle that passes through B, X and tangents to $B C$ and ω_{c} be a circle that passes through C, Y and tangents to $B C$. Prove that circle with center K and radius $K P$ is tangent to 3 circles ω_{b}, ω_{c} and Γ.

Proposed by Tran Quan - Vietnam

5 Let points A, B and C lie on the parabola Δ such that the point H, orthocenter of triangle $A B C$, coincides
with the focus of parabola Δ. Prove that by changing the position of points A, B and C on Δ so that the orthocenter remain at H, inradius of triangle $A B C$ remains unchanged.
Proposed by Mahdi Etesamifard

