AoPS Community

Serbia Team Selection Test 2018

www.artofproblemsolving.com/community/c963900
by XbenX, Wolowizard, MarkBcc 168, tenplusten

- Day 1

1 Prove that there exists infinetly many natural number n such that at least one of the numbers $2^{2^{n}}+1$ and $2018^{2^{n}}+1$ is not a prime.

2 Let n be a fixed positive integer and let x_{1}, \ldots, x_{n} be positive real numbers. Prove that

$$
x_{1}\left(1-x_{1}^{2}\right)+x_{2}\left(1-\left(x_{1}+x_{2}\right)^{2}\right)+\cdots+x_{n}\left(1-\left(x_{1}+\ldots+x_{n}\right)^{2}\right)<\frac{2}{3} .
$$

3 Ana and Bob are playing the following game.

- First, Bob draws triangle $A B C$ and a point P inside it.
- Then Ana and Bob alternate, starting with Ana, choosing three different permutations σ_{1}, σ_{2} and σ_{3} of $\{A, B, C\}$.
- Finally, Ana draw a triangle $V_{1} V_{2} V_{3}$.

For $i=1,2,3$, let ψ_{i} be the similarity transformation which takes $\sigma_{i}(A), \sigma_{i}(B)$ and $\sigma_{i}(C)$ to V_{i}, V_{i+1} and X_{i} respectively (here $V_{4}=V_{1}$) where triangle $\Delta V_{i} V_{i+1} X_{i}$ lies on the outside of triangle $V_{1} V_{2} V_{3}$. Finally, let $Q_{i}=\psi_{i}(P)$. Ana wins if triangles $Q_{1} Q_{2} Q_{3}$ and $A B C$ are similar (in some order of vertices) and Bob wins otherwise. Determine who has the winning strategy.

- Day 2

4 An isosceles trapezium is called right if only one pair of its sides are parallel (i.e parallelograms are not right).
A dissection of a rectangle into n (can be different shapes) right isosceles trapeziums is called strict if the union of any $i,(2 \leq i \leq n)$ trapeziums in the dissection do not form a right isosceles trapezium.
Prove that for any $n, n \geq 9$ there is a strict dissection of a 2017×2018 rectangle into n right isosceles trapeziums.

Proposed by Bojan Basic
$5 \quad$ Let H be the orthocenter of $A B C, A B \neq A C$, and let F be a point on circumcircle of $A B C$ such that $\angle A F H=90^{\circ} . K$ is the symmetric point of H wrt B. Let P be a point such that $\angle P H B=$
$\angle P B C=90^{\circ}$, and Q is the foot of B to $C P$.Prove that $H Q$ is tangent to tge circumcircle of FHK.

6 For any positive integer n, define

$$
c_{n}=\min _{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in\{-1,1\}^{n}}\left|z_{1} \cdot 1^{2018}+z_{2} \cdot 2^{2018}+\ldots+z_{n} \cdot n^{2018}\right| .
$$

Is the sequence $\left(c_{n}\right)_{n \in \mathbb{Z}^{+}}$bounded?

