2019 IFYM, Sozopol

AoPS Community

_

_

www.artofproblemsolving.com/community/c986174

by BigSams, Pinko, billzhao, ductiena1k43, abhinavzandubalm, k.vasilev, MarizOzawa

-	First Round
1	We define the sequence $a_n = (2n)^2 + 1$ for each natural number n . We will call one number <i>bad</i> , if there dont exist natural numbers $a > 1$ and $b > 1$ such that $a_n = a^2 + b^2$. Prove that the natural number n is <i>bad</i> , if and only if a_n is prime.
2	There are some boys and girls that study in a school. A group of boys is called <i>sociable</i> , if each girl knows at least one of the boys in the group. A group of girls is called <i>sociable</i> , if each boy knows at least one of the girls in the group. If the number of <i>sociable</i> groups of boys is odd, prove that the number of <i>sociable</i> groups of girls is also odd.
3	The perpendicular bisector of AB of an acute ΔABC intersects BC and the continuation of AC in points P and Q respectively. M and N are the middle points of side AB and segment PQ respectively. If the lines AB and CN intersect in point D , prove that ΔABC and ΔDCM have a common orthocenter.
4	The diagonals AC and BD of a convex quadrilateral $ABCD$ intersect in point M . The angle bisector of $\angle ACD$ intersects the ray \overrightarrow{BA} in point K . If $MA.MC + MA.CD = MB.MD$, prove that $\angle BKC = \angle CDB$.
5	Prove that there exist a natural number a , for which 999 divides $2^{5n} + a.5^n$ for \forall odd $n \in \mathbb{N}$ and find the smallest such a .
6	Find all odd numbers $n \in \mathbb{N}$, for which the number of all natural numbers, that are no bigger than n and coprime with n , divides $n^2 + 3$.
7	Let a, b, c be positive real numbers such that $abc = 8$. Prove that
	$\frac{a^2}{\sqrt{(1+a^3)(1+b^3)}} + \frac{b^2}{\sqrt{(1+b^3)(1+c^3)}} + \frac{c^2}{\sqrt{(1+c^3)(1+a^3)}} \ge \frac{4}{3}$
8	Find whether the number of powers of 2, which have a digit sum smaller than 2019^{2019} , is finite or infinite.
_	Second Round

- 1 A football tournament is played between 5 teams, each two of which playing exactly one match. 5 points are awarded for a victory and 0 for a loss. In case of a draw 1 point is awarded to both teams, if no goals are scored, and 2 if they have scored any. In the final ranking the five teams had points that were 5 consecutive numbers. Determine the least number of goals that could be scored in the tournament.
- 2 In $\triangle ABC$ with $\angle ACB = 135^{\circ}$, are chosen points M and N on side AB, so that $\angle MCN = 90^{\circ}$. Segments MD and NQ are angle bisectors of $\triangle AMC$ and $\triangle NBC$ respectively. Prove that the reflection of C in line PQ lies on the line AB.
- **3** There are 365 cards with 365 different numbers. Each step, we can choose 3 cards a_i, a_j, a_k and we know the order of them (example: $a_i < a_j < a_k$). With 2000 steps, can we order 365 cards from smallest to biggest??
- **4** For a quadrilateral *ABCD* is given that $\angle CBD = 2\angle ADB$, $\angle ABD = 2\angle CDB$, and AB = CB. Prove that AD = CD.
- **5** Let *A* be the number of 2019-digit numbers, that is made of 2 different digits (For example $10\underbrace{1...1}_{2016}0$ is such number). Determine the highest power of 3 that divides *A*.
- **6** There are *n* kids. From each two at least one of them has sent an SMS to the other. For each kid *A*, among the kids on which *A* has sent an SMS, exactly 10
- 7 Let *G* be a bipartite graph in which the greatest degree of a vertex is 2019. Let *m* be the least natural number for which we can color the edges of *G* in *m* colors so that each two edges with a common vertex from *G* are in different colors. Show that *m* doesnt depend on *G* and find its value.
- 8 Solve the following equation in integers: $4n^4 + 7n^2 + 3n + 6 = m^3$.

- Third Round

- **1** Let p_1, p_2, p_3 , and p be prime numbers. Prove that there exist $x, y \in \mathbb{Z}$ such that $y^2 \equiv p_1 x^4 p_1 p_2^2 p_3^2 \pmod{p}$.
- 2 $\triangle ABC$ is a triangle with center I of its inscribed circle and B_1 and C_1 are feet of its angle bisectors through B and C. Let S be the middle point on the arc \widehat{BAC} of the circumscribed circle of $\triangle ABC$ (denoted with Ω) and let ω_a be the excircle of $\triangle ABC$ opposite to A. Let $\omega_a(I_a)$ be tangent to AB and AC in points D and E respectively and $SI \cap \Omega = \{S, P\}$. Let M be the middle point of DE and N be the middle point of SI. If $MN \cap AP = K$, prove that $KI_a \perp B_1C_1$.

- **3** We are given a non-obtuse $\triangle ABC$ (BC > AC) with an altitude CD ($D \in AB$), center O of its circumscribed circle, and a middle point M of its side AB. Point E lies on the ray \overrightarrow{BA} in such way that AE.BE = DE.ME. If the line OE bisects the area of $\triangle ABC$ and $CO = CD.cos \angle ACB$, determine the angles of $\triangle ABC$.
- 4 On a competition called *"Mathematical duels"* students were given *n* problems and each student solved exactly 3 of them. For each two students there is at most one problem that is solved from both of them. Prove that, if $s \in \mathbb{N}$ is a number for which $s^2 s + 1 < 2n$, then there are *s* problems among the *n*, no three of which solved by one student.
- **5** Let a > 0 and 12a + 5b + 2c > 0. Prove that it is impossible for the equation $ax^2 + bx + c = 0$ to have two real roots in the interval (2, 3).
- **6** Does there exist a function $f : \mathbb{N} \to \mathbb{N}$ such that for all integers $n \ge 2$,

$$f(f(n-1)) = f(n+1) - f(n)$$
?

7 The function $f : \mathbb{R} \to \mathbb{R}$ is such that f(x+1) = 2f(x) for $\forall x \in \mathbb{R}$ and f(x) = x(x-1) for $\forall x \in (0,1]$. Find the greatest real number m, for which the inequality $f(x) \ge -\frac{8}{9}$ is true for $\forall x \in (-\infty, m]$.

8 Find all polynomials $f \in Z[X]$, such that for each odd prime p

$$f(p)|(p-3)! + \frac{p+1}{2}.$$

- Fourth Round

- 1 The points *M* and *N* are on the side *BC* of $\triangle ABC$, so that BM = CN and *M* is between *B* and *N*. Points $P \in AN$ and $Q \in AM$ are such that $\angle PMC = \angle MAB$ and $\angle QNB = \angle NAC$. Prove that $\angle QBC = \angle PCB$.
- **2** Let n be a natural number. At first the cells of a table $2n \ge 2n$ are colored in white. Two players A and B play the following game. First is A who has to color m arbitrary cells in red and after that B chooses n rows and n columns and color their cells in black. Player A wins, if there is at least one red cell on the board. Find the least value of m for which A wins no matter how B plays.
- **3** The natural number n > 1 is such that there exist $a \in \mathbb{N}$ and a prime number q which satisfy the following conditions:

1) q divides n-1 and $q > \sqrt{n}-1$

2) *n* divides $a^{n-1} - 1$ **3)** $qcd(a^{\frac{n-1}{q}} - 1, n) = 1.$ Is it possible for n to be a composite number? 4 Is it true that for \forall prime number p, there exist non-constant polynomials P and Q with $P, Q \in$ $\mathbb{Z}[x]$ for which the remainder modulo p of the coefficient in front of x^n in the product PQ is 1 for n = 0 and n = 4; p - 2 for n = 2 and is 0 for all other n > 0? 5 The non-decreasing functions $f, g : \mathbb{R} \to \mathbb{R}$ are such that $f(r) \leq g(r)$ for \forall rational numbers r. Is it true that $f(x) \leq g(x)$ for \forall real numbers x? 6 Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that: $xf(y) + yf(x) = (x+y)f(x^2 + y^2), \forall x, y \in \mathbb{N}$ 7 Let n be a natural number. The graph G has 10n vertices. They are separated into 10 groups with *n* vertices and we know that there is an edge between two of them if and only if they belong to two different groups. Whats the greatest number of edges a subgraph of G can have, so that there are no 4-cliques in it? We are given a $\triangle ABC$. Point D on the circumscribed circle k is such that CD is a symmetrian 8 in $\triangle ABC$. Let X and Y be on the rays \overrightarrow{CB} and \overrightarrow{CA} , so that CX = 2CA and CY = 2CB. Prove that the circle, tangent externally to k and to the lines CA and CB, is tangent to the circumscribed circle of $\Delta X DY$. _ **Final Round** 1 Find the least value of $k \in \mathbb{N}$ with the following property. There doesn't exist an arithmetic progression with 2019 members, from which exactly k are integers. 2 Does there exist a strictly increasing function $f: \mathbb{N} \to \mathbb{N}$, such that for $\forall n \in \mathbb{N}$: f(f(f(n))) =n + 2f(n)? 3 ΔABC is isosceles with a circumscribed circle $\omega(O)$. Let H be the foot of the altitude from C to AB and let M be the middle point of AB. We define a point X as the second intersection point of the circle with diameter CM and ω and let XH intersect ω for a second time in Y. If $CO \cap AB = D$, then prove that the circumscribed circle of ΔYHD is tangent to ω . 4 The inscribed circle of an acute ΔABC is tangent to AB and AC in K and L respectively. The altitude AH intersects the angle bisectors of $\angle ABC$ and $\angle ACB$ in P and Q respectively. Prove that the middle point M of AH lies on the radical axis of the circumscribed circles of ΔKPB and ΔLQC .

- **5** For $\forall m \in \mathbb{N}$ with $\pi(m)$ we denote the number of prime numbers that are no bigger than m. Find all pairs of natural numbers (a, b) for which there exist polynomials $P, Q \in \mathbb{Z}[x]$ so that for $\forall n \in \mathbb{N}$ the following equation is true: $\frac{\pi(an)}{\pi(bn)} = \frac{P(n)}{Q(n)}$.
- 6 Prove that for $\forall z \in \mathbb{C}$ the following inequality is true: $|z|^2 + 2|z-1| \ge 1$, where " = " is reached when z = 1.
- 7 A convex polyhedron has *m* triangular faces (there can be faces of other kind too). From each vertex there are exactly 4 edges. Find the least possible value of *m*.
- 8 On an exam there are 5 questions, each with 4 possible answers. 2000 students went on the exam and each of them chose one answer to each of the questions. Find the least possible value of *n*, for which it is possible for the answers that the students gave to have the following property: From every *n* students there are 4, among each, every 2 of them have no more than 3 identical answers.

