# 2011 AMC 12A Problems/Problem 14

## Problem

Suppose $a$ and $b$ are single-digit positive integers chosen independently and at random. What is the probability that the point $(a,b)$ lies above the parabola $y=ax^2-bx$? $\textbf{(A)}\ \frac{11}{81} \qquad \textbf{(B)}\ \frac{13}{81} \qquad \textbf{(C)}\ \frac{5}{27} \qquad \textbf{(D)}\ \frac{17}{81} \qquad \textbf{(E)}\ \frac{19}{81}$

## Solution

If $(a,b)$ lies above the parabola, then $b$ must be greater than $y(a)$. We thus get the inequality $b>a^3-ba$. Solving this for $b$ gives us $b>\frac{a^3}{a+1}$. Now note that $\frac{a^3}{a+1}$ constantly increases when $a$ is positive. Then since this expression is greater than $9$ when $a=4$, we can deduce that $a$ must be less than $4$ in order for the inequality to hold, since otherwise $b$ would be greater than $9$ and not a single-digit integer. The only possibilities for $a$ are thus $1$, $2$, and $3$.

For $a=1$, we get $b>\frac{1}{2}$ for our inequality, and thus $b$ can be any integer from $1$ to $9$.

For $a=2$, we get $b>\frac{8}{3}$ for our inequality, and thus $b$ can be any integer from $3$ to $9$.

For $a=3$, we get $b>\frac{27}{4}$ for our inequality, and thus $b$ can be any integer from $7$ to $9$.

Finally, if we total up all the possibilities we see there are $19$ points that satisfy the condition, out of $9 \times 9 = 81$ total points. The probability of picking a point that lies above the parabola is thus $\frac{19}{81} \rightarrow \boxed{\textbf{E}}$

## Video Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 