Mock AIME I 2012 Problems/Problem 10
Contents
Problem
Consider the function . Find the sum of all
for which
, where
is measured in degrees and
.
Solution 1 (Sum-to-Product)
Recalling the trigonometric sum-to-product identities, we can rearrange terms and evaluate as follows:
\begin{align*}
f(23, x) &= \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{22x} + \sin{23x}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{22x} + \cos{23x}} \\
&= \dfrac{(\sin{x} + \sin{23x}) + (\sin{2x} + \sin{22x}) + \cdots + (\sin{11x} + \sin{13x}) + \sin{12x}}{(\cos{x} + \cos{23x}) + (\cos{2x} + \cos{22x}) + \cdots + (\cos{11x} + \cos{13x}) + \cos{12x}} \\
&= \dfrac{2\sin{12x}\cos{11x}+2\sin{12x}\cos{10x}+\cdots+2\sin{12x}\cos{x}+\sin{12x}}{2\cos{12x}\cos{11x}+2\cos{12x}\cos{10x}+\cdots+2\cos{12x}\cos{x}+\cos{12x}} \\
&= \dfrac{2\sin{12x}(\cos{11x}+\cos{10x}+\cos{9x}+\cdots+\cos{x}+1)}{2\cos{12x}(\cos{11x}+\cos{10x}+\cdots+\cos{x}+1)} \\
&= \dfrac{\sin{12x}}{\cos{12x}} \\
&= \tan{12x}
\end{align*}
Likewise, we can show that
Now, we desire to find all that satisfy the following equation:
Because
has a period of
and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that
must then be some integer multiple of tangent's period,
. Thus,
must be a multiple of
, and so the possible values of
between
and
are
,
, and
.
Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer:
Solution 2 (Euler's Formula)
Recall that, by Euler's Formula, Therefore,
, and
, where
and
denote the real and imaginary parts, respectively, of a given complex number.
Using this fact and the geometric series formula, we can now manipulate our expression for :
\begin{align*}
f(n,x) &= \frac{\sin{0x} + \sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{0x} + \cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx} - 1} \\
&= \frac{\sum_{k=0}^n\Im(e^{ix})}{\left(\sum_{k=0}^n\Re(e^{ix})\right)-1} \\
&= \frac{\Im(\sum_{k=0}^ne^{ix})}{\Re(\sum_{k=0}^ne^{ix})-1} \\
&= \frac{\Im\left(\frac{1-e^{(n+1)ix}}{1-e^{ix}}\right)}{\Re\left(\frac{1-e^{(n+1)ix}}{1-e^{ix}}\right)-1} \\
&= \frac{\Im\left(\frac{(1-e^{(n+1)ix})(1-e^{-ix})}{(1-e^{ix})(1-e^{-ix})}\right)}{\Re\left(\frac{(1-e^{(n+1)ix})(1-e^{-ix})}{(1-e^{ix})(1-e^{-ix})}\right)-1} \\
&= \frac{\Im\left(\frac{1-e^{(n+1)ix}-e^{-ix}+e^{nix}}{2-e^{ix}-e^{-ix}}\right)}{\Re\left(\frac{1-e^{(n+1)ix}-e^{-ix}+e^{nix}}{2-e^{ix}-e^{-ix}}\right)-1} \\
\text{Note that, because sine is odd, }&2-e^{ix}-e^{-ix}=2-\cos x -i\sin x - \cos x +i\sin x \in \mathbb{R}.\\
\implies f(n,x) &= \frac{\Im(1-e^{(n+1)ix}-e^{-ix}+e^{nix})}{\Re(1-e^{(n+1)ix}-e^{-ix}+e^{nix})-2+e^{ix}+e^{-ix}} \\
&= \frac{\sin(nx)+\sin x-\sin((n+1)x)}{1-\cos((n+1)x)-\cos x+\cos(nx)-2+2\cos x} \\
&= \frac{\sin(nx)+\sin x-\sin((n+1)x)}{\cos(nx)+\cos x-\cos((n+1)x)-1}
\end{align*}
Now, using the sum-to-product identities and double-angle identities, we deduce that:
\begin{align*}
f(n,x) &= \frac{2\sin\left(\frac{n+1}2x\right)\cos\left(\frac{n-1}2x\right)-2\sin\left(\frac{n+1}2x\right)\cos\left(\frac{n+1}2x\right)}{2\cos\left(\frac{n+1}2x\right)\cos\left(\frac{n-1}2x\right)-2\cos^2\left(\frac{n+1}2x\right)+1-1} \\
&= \frac{2\sin\left(\frac{n+1}2x\right)(\cos\left(\frac{n-1}2x\right)+\cos\left(\frac{n+1}2x\right))}{2\cos\left(\frac{n+1}2x\right)(\cos\left(\frac{n-1}2x\right)+\cos\left(\frac{n+1}2x\right))} \\
&= \frac{\sin\left(\frac{n+1}2x\right)}{\cos\left(\frac{n+1}2x\right)} \\
&= \tan\left(\frac{n+1}2x\right)
\end{align*}
Now, we know that
, and
. From here, we proceed as in Solution 1 to obtain our answer of
.
Solution 3 (Integral Calculus, non-rigorous)
Recall that the average value of some function over the interval
is given by
Then, we can approximate (hopefully well enough) the above expression for
by multiplying
by the average of the function
over the interval
:
\begin{align*}
f(n,x) &= \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx}} \\
&\approx \dfrac{n(\frac1n\int_0^n\sin(kx)dk)}{n(\frac1n\int_0^n\cos(kx)dk)} \\
&= \dfrac{-(\frac1x\cos(kx))|^n_0}{(\frac1x\sin(kx))|^n_0} \\
&= \dfrac{1-\cos(nx)}{\sin(nx)}
\end{align*}
Now, we desire to find that satisfy the equation:
Recalling the tangent half-angle identities, we can solve as follows:
\begin{align*}
\frac{1-\cos(23x)}{\sin(23x)} &= \frac{1-\cos(33x)}{\sin(33x)} \\
\tan\left(\frac{23}2x\right) &= \tan\left(\frac{33}2x\right) = \tan\left(\frac{23}2x+5x\right).
\end{align*}
Now, because has a period of
and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that
must then be some integer multiple of tangent's period,
. Thus,
must be a multiple of
, and so the possible values of
between
and
are
,
, and
.
Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer: