Search results
Create the page "144" on this wiki! See also the search results found.
Page title matches
- 65 bytes (10 words) - 18:05, 29 October 2024
Page text matches
- ...bf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 144</math>1 KB (216 words) - 23:23, 5 September 2024
- 144 take algebra and biology. <math>=243+323+143+241+300-213-264-144-121-111-90-80-60-70-60</math>9 KB (1,703 words) - 00:20, 7 December 2024
- ...kly becomes apparent that 174 is much too large, so <math>n</math> must be 144.16 KB (2,660 words) - 22:42, 28 August 2024
- ...^2</math>. The common factors are 2 and <math>3^2</math>, so <math>GCD(270,144)=2\cdot3^2=18</math>.2 KB (288 words) - 21:40, 26 January 2021
- ...21 122 123 124 125 126 128 129 130 132 133 134 135 136 138 140 141 142 143 144 145 146 147 148 150 152 153 154 155 156 158 159 160 161 162 164 165 166 1686 KB (350 words) - 11:58, 26 September 2023
- The number <math> \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}</math> can be written as <math> a\sqrt{2}+b\sqrt{3}+c\sqrt{5 ...tp://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=144 2006 AIME I Math Jam Transcript]7 KB (1,173 words) - 02:31, 4 January 2023
- Putting it all together, we find <math>h = \frac {144}{\sqrt {5\cdot317}}</math>. ...=144+ \lfloor \sqrt{5 \cdot 317}\rfloor =144+\lfloor \sqrt{1585} \rfloor =144+39=\boxed{183}</math>.</center>6 KB (980 words) - 20:45, 31 March 2020
- The number <math> \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}</math> can be written as <math> a\sqrt{2}+b\sqrt{3}+c\sqrt{5 <cmath> a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}</cmath>3 KB (439 words) - 17:24, 10 March 2015
- <math>\textbf{(A) } 100\pi \qquad\textbf{(B) } 144\pi \qquad\textbf{(C) } 288\pi \qquad\textbf{(D) } 576\pi \qquad\textbf{(E)12 KB (1,784 words) - 15:49, 1 April 2021
- ...} 108 \qquad \text {(B) } 115 \qquad \text {(C) } 132 \qquad \text {(D) } 144 \qquad \text {(E) } 15613 KB (1,987 words) - 17:53, 10 December 2022
- \mathrm{(D)}\ 144 \qquad12 KB (1,781 words) - 13:59, 19 July 2024
- \mathrm{(D)}\ 144 \qquad2 KB (283 words) - 19:02, 24 December 2020
- 9 & 144 & no\ \hline8 KB (1,249 words) - 20:25, 20 November 2024
- ...s <cmath>12^2=DE^2+4-2(2)(DE)(\cos 120^{\circ})</cmath> which gives <cmath>144-4=DE^2+2DE</cmath>. Adding <math>1</math> to both sides gives <math>141=(DE <cmath>144 = 2s^2 - 36s + 164 - (s^2 - 18s + 80)</cmath> This simplifies to <math>s^24 KB (567 words) - 19:20, 3 March 2020
- <cmath>a^2-10a+25+b^2-24b+144=100-10a+\frac{a^2}4</cmath>12 KB (2,001 words) - 19:26, 23 July 2024
- ...left[1-\left(\frac{1}{4}+\frac{5}{18}+\frac{5}{16}\right)\right]=\frac{23}{144}t</math>. ...>x</math>, so we have the equation <math>\left(800+x\right)w\cdot\frac{23}{144}t=\frac{1}{4}</math>. Dividing by the first equation, we have4 KB (592 words) - 18:02, 26 September 2020
- ...n <math>9z^2 - yz + 4 = 0</math> to see that <math>z = \frac{y\pm\sqrt{y^2-144}}{18}</math>. We know that <math>y</math> must be an integer and as small a5 KB (824 words) - 18:34, 20 July 2024
- ...is <math>2\cdot \left( \frac{6\sqrt{2}\cdot 3\sqrt{2} \cdot 6}{3} \right)=144</math>. Thus, our answer is <math>432-144=\boxed{288}</math>.6 KB (971 words) - 14:35, 27 May 2024
- <center><math>(a-12)^2+ b^2 \Rightarrow a^2-24a+144+b^2 = 64</math></center>14 KB (2,351 words) - 20:06, 8 December 2024
- ...e is <math>12x</math>, and the area of the triangle is <math>12^2 = \boxed{144}</math>. ...rea of the large triangle is <math>\dfrac{1}{2} \cdot 24 \cdot 12 = \boxed{144}</math>.4 KB (726 words) - 12:39, 13 August 2023