Search results
Create the page "16" on this wiki! See also the search results found.
Page title matches
- 2 KB (307 words) - 23:58, 17 November 2024
- 1 KB (235 words) - 13:52, 25 June 2023
- 1 KB (210 words) - 11:36, 2 July 2024
- {{duplicate|[[2006 AMC 12A Problems|2006 AMC 12A #16]] and [[2006 AMC 10A Problems/Problem 23|2006 AMC 10A #23]]}}2 KB (286 words) - 09:16, 19 December 2021
- 2 KB (364 words) - 03:54, 16 January 2023
- <!-- [[Image:2006_AMC10A-16.png]] --> ...textbf{(B) } 15\sqrt{2}\qquad\textbf{(C) } \frac{64}{3}\qquad\textbf{(D) } 16\sqrt{2}\qquad\textbf{(E) } 24\qquad</math>5 KB (811 words) - 10:44, 30 November 2024
- <math> 16 \cdot 365 + 4 \cdot 1 = 5844 </math>2 KB (336 words) - 09:51, 11 May 2024
- 45 bytes (5 words) - 16:22, 12 July 2011
- 2 KB (279 words) - 10:57, 17 July 2023
- 1 KB (167 words) - 19:30, 11 January 2024
- 1 KB (218 words) - 14:52, 19 August 2023
- ...nd each choice generates <math>3! = 6</math> 3-digit numbers, giving <math>16 \times 6 = 96</math> numbers. ...choice generates <math>4</math> 3-digit numbers, giving <math>4 \times 4 = 16</math> numbers.2 KB (336 words) - 12:40, 31 December 2024
- 2 KB (228 words) - 01:01, 23 January 2023
- 2 KB (310 words) - 10:28, 3 August 2021
- 1 KB (166 words) - 11:20, 5 July 2013
- 2 KB (317 words) - 09:26, 5 November 2023
- ...h> squares possible <math>(25</math> - <math>1\times1</math> squares <math>16</math> - <math>2\times2</math> squares <math>9</math> - <math>3\times3</mat2 KB (377 words) - 00:37, 14 August 2024
- 1 KB (240 words) - 11:59, 30 March 2023
- 3 KB (577 words) - 15:33, 9 October 2022
- 3 KB (463 words) - 15:35, 15 February 2021
Page text matches
- &= \frac{3}{8}-\left(-\frac{2}{5}\right)\left\lfloor\frac{-15}{16}\right\rfloor\2 KB (257 words) - 09:57, 16 June 2023
- \ = 2\int_0^1 1 + \frac{3}{8}x dx = 2(x + \frac{3}{16}x^2) \left.\right|_{\;0}^{\;1} \ = 2(1 + \frac{3}{16}1^2) = 2\frac{19}{16} = \frac{19}{8}</math>8 KB (1,016 words) - 23:17, 30 December 2023
- *2016 Regional - Saturday 2/27/16 *2016 State Finals - Saturday 5/7/168 KB (1,182 words) - 13:26, 3 April 2024
- Nearly 16,000 U.S. students participate in Local Chemistry Olympiad competitions. Ove2 KB (267 words) - 09:11, 21 October 2024
- =\frac{2}{2}+\frac{4}{4}+\frac{6}{8}+\frac{8}{16}+\cdots\ =\frac{1}{2}+\frac{4}{4}+\frac{9}{8}+\frac{16}{16}+\cdots\1 KB (193 words) - 20:13, 18 May 2021
- *AIME Floor: 85.5 (top ~16%) *AIME Floor: 88.5 (top ~16%)17 KB (1,900 words) - 19:38, 3 January 2025
- We can determine that <math>\frac{a+b+c}{3}+d+16=a+b+c+d</math>. This, with some algebra, means that <math>\frac{1}{3}(a+b+c1 KB (200 words) - 22:35, 28 August 2020
- pair A=(-3*sqrt(3)/32,9/32), B=(3*sqrt(3)/32, 9/32), C=(0,9/16); draw((-2/3,9/16)--(2/3,9/16));3 KB (415 words) - 17:01, 24 May 2020
- ...ed using the top 15 winners in West Virginia State Math Field Day. Winners 16-30 are used as potential alternates for the team. West Virginia State Math22 KB (3,532 words) - 10:25, 27 September 2024
- **16 points4 KB (632 words) - 17:21, 21 December 2024
- <cmath>=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{16}}</cmath> <cmath>=\sqrt{\frac{(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}{16}}</cmath>5 KB (783 words) - 17:58, 1 January 2025
- ([[2008 AMC 12B Problems/Problem 16|Source]]) A rectangular floor measures <math>a</math> by <math>b</math> fee <math>8=ab-4a-4b+16=(a-4)(b-4)</math>4 KB (682 words) - 12:13, 8 December 2024
- ...te competitions held for [[MathCounts]]. The Countdown Round takes the top 16 students and is unofficial, so countdown winners get separate awards. The s1 KB (140 words) - 21:41, 28 July 2024
- * <math>16! = 20922789888000</math> \left\lfloor\frac {100}{49}\right\rfloor=14+2=16</math>10 KB (809 words) - 15:40, 17 March 2024
- ...)=a^2+16a-80=0</math>. The sum of these values of <math>a</math> is <math>-16</math>.4 KB (768 words) - 16:56, 24 June 2024
- unitsize(16); unitsize(16);5 KB (804 words) - 02:01, 12 June 2023
- *([[2018 AMC 10B Problems/Problem 16|2018 AMC 10B]]) Let <math>a_1,a_2,\dots,a_{2018}</math> be a strictly incre4 KB (569 words) - 21:34, 30 December 2024
- <cmath>16[ABCD]^2=4(ab+cd)^2-(a^2+b^2-c^2-d^2)^2</cmath> <cmath>16[ABCD]^2=(2(ab+cd)+(a^2+b^2-c^2-d^2))(2(ab+cd)-(a^2+b^2-c^2-d^2))</cmath>3 KB (543 words) - 18:35, 29 October 2024
- ...6\}</math> we would be trying to calculate <math>\frac 3{\frac 13 + \frac 16 - \frac 12} = \frac 30</math>, which is obviously problematic.1 KB (196 words) - 23:49, 5 January 2021
- * 2003 - Arnav Tripathy (6), Mikhail Lavrov (16), Michael Lin, Vivek Bhattacharya, Coach: Marla McCrea4 KB (582 words) - 20:40, 14 May 2024