Search results
Create the page "169" on this wiki! See also the search results found.
- ...45 146 147 148 150 152 153 154 155 156 158 159 160 161 162 164 165 166 168 169 170 171 172 174 175 176 177 178 180 182 183 184 185 186 187 188 189 190 1926 KB (350 words) - 11:58, 26 September 2023
- <cmath>2006=13^2x^2+4^2y^2+18^2z^2=169\cdot2+16\cdot3+324\cdot5</cmath>3 KB (439 words) - 17:24, 10 March 2015
- <math>\mathrm{(A)}\ 16910 KB (1,547 words) - 03:20, 9 October 2022
- \sin^2(\alpha)+\cos^2(\alpha) = 1 &\Rightarrow \frac{s^4-26s^2+169}{144s^2} + \frac{s^4-170s^2+7225}{144s^2} = 1 \ ...</math> and expand, yielding the equation <cmath>s^4-170s^2+7225+s^4-26s^2+169=144s^2.</cmath> Simplifying gives the equation <cmath>2s^4-340s^2+7394=0.</7 KB (1,182 words) - 13:31, 1 September 2024
- ...ng yields <math>a^2 = \frac{69}{100}</math>, so the answer is <math>\boxed{169}</math>. <cmath>(-5+12i)(\sqrt{69}-10i)(12-5i)=169(10+i\sqrt{69}).</cmath>12 KB (2,001 words) - 19:26, 23 July 2024
- <cmath>169 = 196 + 225 - 2 \cdot 14 \cdot 15 \cdot \cos{C} \Rightarrow \cos{C} = \frac ...gonal lines. Hence, we have <cmath>\frac{BE}{15-BE}\cdot \frac{9}{6}=\frac{169}{196}\implies BE=\frac{2535}{463}</cmath> so our desired answer is <math>\b14 KB (2,340 words) - 15:38, 21 August 2024
- ...re integers, <math>3x^2 + 1</math> cannot equal a multiple of three. <math>169</math> doesn't work either, so <math>3x^2 + 1 = 13</math>, and <math>x^2 =1 KB (160 words) - 03:44, 21 January 2023
- &= 441r^2 + 546r + 169 \ &= 441(r+1) +546r + 169 \10 KB (1,595 words) - 15:30, 24 August 2024
- <math>f_4(11) = f_1(49)=169</math> <math>f_5(11) = f_1(169)=256</math>696 bytes (103 words) - 18:16, 27 February 2018
- real h=169/2*(3/133)^.5;7 KB (1,086 words) - 07:16, 29 July 2023
- ...ath>\dfrac{1}{x\overline{x}}=(13\, -\, \omega)(13\, -\, \overline{\omega})=169-13(\omega\, +\, \overline{\omega})\, +\, \omega\overline{\omega}=170\, -\,3 KB (383 words) - 19:30, 16 June 2024
- b^2 &= a^2 + 169 - 26a \cos x \ \frac{169 \sin x}{12} &= \frac{210 \sin (C-x)}{12} \7 KB (1,184 words) - 12:25, 22 December 2022
- ...{13}=\sqrt {4\left(\frac {8\sqrt {3}}{13}\right)^{2}} = \sqrt {\frac {768}{169}}\implies m + n = \boxed{937}. ...ing through algebra yields <math>x^2=192/169</math>, so <math>2x=\sqrt{768/169}</math> and the answer is <math>\boxed{937}</math>.6 KB (1,043 words) - 09:09, 15 January 2024
- ...e we are looking for a ratio, we assume that <math>AB=120</math>, <math>BC=169</math>, and <math>CA=260</math> in order to simplify our computations. ...], we can place [[mass points]] on <math>C,D,A</math> of <math>120,\,289,\,169</math> respectively. Thus, a mass of <math>\frac {289}{2}</math> belongs at8 KB (1,382 words) - 23:37, 11 July 2024
- &=(\sqrt{169})\diamond(\sqrt{169})\833 bytes (110 words) - 12:58, 24 July 2022
- <math>4 , 9 , 25 , 49 , 121, 169 , 289 , 361 , 529</math> ...to the <math>\sqrt{n}</math>. Now, if we add <math>48</math> we get <math>169</math>, which works for the second part. If we do this for the second case,8 KB (1,255 words) - 21:56, 23 October 2024
- ...h>1<144<164<169</math>, we can say that <cmath>\sqrt{144}<\sqrt{164}<\sqrt{169} \Rightarrow 12<\sqrt{164}<13 \rightarrow \boxed{\text{E}}</cmath>636 bytes (86 words) - 22:55, 4 July 2013
- In total, we get <math>145 + 24 = 169</math>. Again, this totals <math>4 + 20 + 20 + 125 = 169</math>.10 KB (1,561 words) - 13:27, 21 July 2024
- Summing these gives <math>5x^2 + 5y^2 = 845 \Longrightarrow x^2 + y^2 = 169</math>. ...>(2x)^2 + (2y)^2 = XY^2 \Longrightarrow XY = \sqrt{4(x^2 + y^2)} = \sqrt{4(169)} = \sqrt{676} = \boxed{\mathrm{(B)}\ 26}</cmath>3 KB (447 words) - 14:02, 17 August 2023
- <math>\mathrm{(A)}\ 169 subsitute the answer choices starting with B because 169 is less than 171 and results in a neagtive number2 KB (261 words) - 22:34, 18 March 2023