1971 Canadian MO Problems/Problem 6
Problem
Show that, for all integers ,
is not a multiple of
.
Solutions
Solution 1
Notice . For this expression to be equal to a multiple of 121,
would have to equal a number in the form
. Now we have the equation
. Subtracting
from both sides and then factoring out
on the right hand side results in
. Now we can say
and
. Solving the first equation results in
. Plugging in
in the second equation and solving for
,
. Since
*
is clearly not a multiple of 121,
can never be a multiple of 121.
Solution 2
n^2+2n+12 =(n+1)^2+11 = (n+1)(n+1)+11 Now 11 itself is a multiple of 11, Therefore there are 2 cases for the value of n Case 1: n+1 isn't a multiple of 11 if n isn't a multiple of 11 then (n+1)^2 isn't a multiple of 121 i.e n^2+2n+12 Isn't divisible by 11 Case 2: if n+1 is a multiple of 11 then (n+1)^2 is a multiple of 121, let (n+1)^2=121k But 121k+11 can't be equal to a multiple of 11 hence proved
Solution 3
In order for to divide
,
must also divide
.
Plugging in all numbers modulo :
or
to make computations easier,
reveals that only satisfy the condition
.
Plugging into
shows that it is not divisible by
.
Thus, there are no integers such that
is divisible by
.
~iamselfemployed
See Also
1971 Canadian MO (Problems) | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • | Followed by Problem 7 |