Search results

  • [[Image:Itest2007.jpg|thumb|right|2007 iTest logo.]] The '''2007 iTest''' was held from 7 PM CST, Wednesday, September 12 to 7 PM CST, Sunday, Sep
    3 KB (305 words) - 14:10, 5 November 2023
  • [[2007 iTest Problems/Problem 1|Solution]] [[2007 iTest Problems/Problem 2|Solution]]
    30 KB (4,794 words) - 22:00, 8 May 2024
  • [[2008 iTest Problems/Problem 1|Solution]] [[2008 iTest Problems/Problem 2|Solution]]
    71 KB (11,749 words) - 11:39, 20 November 2024
  • Find the largest [[prime]] number less than <math>2008</math> that is a divisor of some integer in the infinite ...ght\rfloor, \left\lfloor \frac{2008^3}{3}\right\rfloor, \left\lfloor \frac{2008^4}{4} \right\rfloor, \cdots</cmath>
    4 KB (571 words) - 20:21, 22 November 2018
  • For how many positive integers <math>n</math>, <math>1 \le n \le 2008</math>, can the set {{2008 iTest box|num-b=92|num-a=94}}
    1 KB (232 words) - 20:20, 22 November 2018
  • {{2008 iTest box|num-b=47|num-a=49}}
    988 bytes (145 words) - 16:14, 14 July 2018
  • <center><math>p(x) = x^{2008} + x^{2007} + x^{2006} + \cdots + x + 1,</math></center> the remainder when <math>|r(2008)|</math> is divided by <math>1000</math>.
    3 KB (560 words) - 18:49, 23 November 2018
  • \her an idea for a problem for the <math>2008</math> Jupiter Falls High School Math Meet team test: ''How many of the 2009 numbers on Row 2008 of Pascal's Triangle are even?''
    5 KB (788 words) - 04:15, 28 January 2019
  • ...what he can discover. "See if you can find the units digit of <math>2008^{2008}</math>," Michael challenges. After a little while, ...s correct. What is Joshua's correct answer (the units digit of <math>2008^{2008}</math>)?
    2 KB (245 words) - 18:23, 4 August 2018
  • {{2008 iTest box|num-b=3|num-a=5}}
    925 bytes (139 words) - 16:43, 24 November 2018
  • {{2008 iTest box|num-b=5|num-a=7}}
    915 bytes (135 words) - 23:52, 21 June 2018
  • {{2008 iTest box|num-b=7|num-a=9}}
    818 bytes (127 words) - 23:59, 21 June 2018
  • Find the number of integers <math>n</math> for which <math>n^2 + 10n < 2008</math>. {{2008 iTest box|num-b=6|num-a=8}}
    442 bytes (64 words) - 23:56, 21 June 2018
  • ...4 + 2003 + 1 = 2008</math> digits. Since <math>10^{2007}</math> has <math>2008</math> digits and <math>10^{2007}</math> is less than <math>2003\underbrace {{iTest box|year=2007|num-b=40|num-a=42}}
    3 KB (579 words) - 17:22, 2 July 2018
  • The prime factorization of <math>2008</math> is <math>2^3 \cdot 251</math>, and the [[prime factorization]] of <m {{iTest box|year=2007|num-b=23|num-a=25}}
    2 KB (340 words) - 18:49, 30 June 2018
  • <center><math>4n-18 < 2008</math></center> <center><math>7n + 17 > 2008</math>.</center>
    698 bytes (89 words) - 18:49, 23 June 2018
  • {{2008 iTest box|before=First Problem|num-a=2}}
    1 KB (219 words) - 19:50, 21 June 2018
  • ...2008</math> (the product of <math>a, b</math>, and <math>c</math> is <math>2008</math>). The number <math>2008</math> can be factored into <math>2^3 \cdot 251</math>. Use [[casework]] t
    2 KB (288 words) - 19:17, 18 April 2021
  • {{2008 iTest box|num-b=15|num-a=17}}
    2 KB (282 words) - 12:39, 22 June 2018
  • {{2008 iTest box|num-b=51|num-a=53}}
    2 KB (252 words) - 12:37, 13 July 2018

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)