Search results

  • *USAMO floor: 225.5 (AMC 12A), 235 (AMC 12B) *USAJMO floor: 219 (AMC 10A), 225 (AMC 10B)
    17 KB (1,900 words) - 19:38, 3 January 2025
  • ...late has no palindromes is <cmath>\frac{9}{10} \cdot \frac{25}{26} = \frac{225}{260} = \frac{45}{52}.</cmath> Taking the complement of this, the probabili
    8 KB (1,192 words) - 16:20, 16 June 2023
  • ...04 205 206 207 208 209 210 212 213 214 215 216 217 218 219 220 221 222 224 225 226 228 230 231 232 234 235 236 237 238 240 242 243 244 245 246 247 248 249
    6 KB (350 words) - 11:58, 26 September 2023
  • <math>\log_{225}x+\log_{64}y=4</math> <math>\log_{x}225-\log_{y}64=1</math>
    4 KB (680 words) - 11:54, 16 October 2023
  • \text{(C) }225
    12 KB (1,792 words) - 12:06, 19 February 2020
  • \qquad\mathrm{(B)}\ 225
    10 KB (1,547 words) - 03:20, 9 October 2022
  • <cmath>169 = 196 + 225 - 2 \cdot 14 \cdot 15 \cdot \cos{C} \Rightarrow \cos{C} = \frac{3}{5}</cmat
    14 KB (2,340 words) - 15:38, 21 August 2024
  • ...(1 - x^2)(1 - 4x^2)\cdots(1 - 225x^2)</math> <math>= 1 - (1 + 4 + \ldots + 225)x^2 + R(x)</math>. Equating coefficients, we have <math>2C - 64 = -(1 + 4 + \ldots + 225) = -1240</math>, so <math>-2C = 1176</math> and <math>|C| = \boxed{588}</ma
    7 KB (1,099 words) - 12:41, 30 December 2024
  • \log_{225}{x}+\log_{64}{y} = 4\ \log_{x}{225}- \log_{y}{64} = 1
    8 KB (1,374 words) - 20:09, 27 July 2023
  • ...hat could possibly work by Chicken McNugget is <math>9 \cdot 25 - 9 - 25 = 225-34 = 191</math>. We then bash from top to bottom:
    8 KB (1,365 words) - 14:38, 10 December 2024
  • 2 BD^2 + 2 \cdot 36 &= 81 + 225 = 306, \ <cmath>36+x^2-12x\cos (180-\theta) = 36+x^2+12x\cos \theta = 225</cmath>
    14 KB (2,234 words) - 15:31, 22 December 2024
  • This factors to <math>(3b^2-225)(b^2+1369)</math>, so <math>3b^2 = 225, b = 5\sqrt 3</math>.
    5 KB (789 words) - 20:30, 1 January 2025
  • a^2 &= c^2 + 225 - 30c \cos x.
    7 KB (1,184 words) - 12:25, 22 December 2022
  • :We have <math>{3\choose{1}} \cdot 3 \cdot 5^{2}= 225</math> ways. The number of switches in position A is <math>1000-125-225 = \boxed{650}</math>.
    3 KB (475 words) - 12:33, 4 July 2016
  • pair W=dir(225), X=dir(315), Y=dir(45), Z=dir(135), O=origin;
    3 KB (398 words) - 12:27, 12 December 2020
  • <center><math>\log_{225}x+\log_{64}y=4</math></center> <center><math>\log_{x}225-\log_{y}64=1</math></center>
    1 KB (194 words) - 18:55, 23 April 2016
  • ...6^2</math> and <math>h^2 = x^2 - 15^2</math>. Thus, <math>y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189</math>. The LHS is [[difference of squares]
    3 KB (490 words) - 17:13, 13 February 2021
  • ...n just use mass points to get <math>\left( \frac{15}{26} \right)^2= \frac{225}{676}</math> which is <math>\boxed{901}</math>. ...}{[ABC]}=\frac{\frac{1575}{338}\sin{C}}{14\sin{C}}=\frac{225}{676}\implies 225+676=\boxed{901}</cmath>
    6 KB (937 words) - 19:06, 24 August 2024
  • draw(0.4*dir(225)--dir(225)); draw(0.4*dir(225)--dir(225));
    10 KB (1,617 words) - 00:34, 26 October 2021
  • ...2x/17)/AD=(x/2)/16. Hence, AD=64/17, and CD=16-AD=208/17, so the answer is 225.
    2 KB (278 words) - 15:32, 27 December 2019

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)