Search results

  • ...h>T = \{1, 3, 6\}</math>, then <math>f(T) = (1 \cdot 3 \cdot 6)^2 = 18^2 = 324</math>. For any positive integer <math>n</math>, consider all nonempty subs
    5 KB (768 words) - 23:59, 28 September 2024
  • ...01 302 303 304 305 306 308 309 310 312 314 315 316 318 319 320 321 322 323 324 325 326 327 328 329 330 332 333 334 335 336 338 339 340 341 342 343 344 345
    6 KB (350 words) - 11:58, 26 September 2023
  • <cmath>2006=13^2x^2+4^2y^2+18^2z^2=169\cdot2+16\cdot3+324\cdot5</cmath>
    3 KB (439 words) - 17:24, 10 March 2015
  • \mathrm{(B)}\ 324
    13 KB (2,058 words) - 11:36, 4 July 2023
  • \mathrm{(B)}\ 324 ...relatively prime to <math>999</math>. So our final answer is <math>648/2 = 324</math>, or <math>\boxed{\text{B}}</math>.
    6 KB (1,037 words) - 22:32, 9 November 2024
  • ...4^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}.</cmath>
    6 KB (869 words) - 14:34, 22 August 2023
  • A <math>150\times 324\times 375</math> rectangular solid is made by gluing together <math>1\times
    6 KB (931 words) - 16:49, 21 December 2018
  • ...in on triangle <math>\Delta QAR,</math> we have <math>\left(2x^2\right)=64+324-2(8)(18)\left(-\frac{11}{24}\right),</math> which gives that <math>x^2 = \b
    14 KB (2,351 words) - 20:06, 8 December 2024
  • pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C);
    11 KB (1,879 words) - 20:04, 8 December 2024
  • ...4^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}.</cmath> ...2b^2 + 2ab\right).</math> Each of the terms is in the form of <math>x^4 + 324.</math> Using Sophie Germain, we get that
    7 KB (965 words) - 22:39, 11 September 2024
  • ...so <math>3n^2 > 999</math> and <math>n > \sqrt{333}</math>. <math>18^2 = 324 < 333 < 361 = 19^2</math>, so we must have <math>n \geq 19</math>. Since w
    4 KB (673 words) - 18:48, 28 December 2023
  • We can solve for <math>x</math> in the 2nd row, namely <math>324 - 5x = 74</math> because the arithmetic progression from left to right has
    5 KB (877 words) - 19:57, 27 December 2024
  • ...t(4 \cos^2 \theta - \dfrac{3}{2}\right)^2 = \dfrac{729}{324} - \dfrac{200}{324} = \left(\dfrac{23}{18}\right)^2</math>
    4 KB (547 words) - 03:46, 1 December 2024
  • ...^2 - \frac{1}{2} \cdot (18\sqrt{3})^2 \sin \frac{\pi}{3}\right] = 270\pi - 324\sqrt{3}</math>, and <math>q+r+s = \boxed{597}</math>.
    4 KB (717 words) - 21:20, 3 June 2021
  • A <math>150\times 324\times 375</math> [[rectangle|rectangular]] [[solid]] is made by gluing toge For <math>(a,b,c) = (150, 324, 375)</math>, we have:
    5 KB (923 words) - 20:21, 22 September 2023
  • <math>\textbf{(A) } 162 \qquad \textbf{(B) } 180 \qquad \textbf{(C) } 324 \qquad \textbf{(D) } 360 \qquad \textbf{(E) } 720 </math>
    3 KB (398 words) - 18:17, 17 September 2023
  • <math>\mathrm{(A)} 162 \qquad \mathrm{(B)} 180 \qquad \mathrm{(C)} 324 \qquad \mathrm{(D)} 360 \qquad \mathrm{(E)} 720 </math>
    12 KB (1,874 words) - 20:20, 23 December 2020
  • ...4^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}</math>. ([[1987 AIME Problems/Problem 14|1987 AIME, #14]])
    2 KB (226 words) - 18:11, 4 August 2024
  • 324 is divisible by 4 324 divided by 5 is 1
    5 KB (713 words) - 22:43, 8 October 2024
  • draw((5,0)--(9,0)--(4*dir(324)+(9,0)));
    13 KB (1,880 words) - 12:35, 19 February 2020

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)