Search results

  • ...38 339 340 341 342 343 344 345 346 348 350 351 352 354 355 356 357 358 360 361 362 363 364 365 366 368 369 370 371 372 374 375 376 377 378 380 381 382 384
    6 KB (350 words) - 11:58, 26 September 2023
  • \qquad\mathrm{(D)}\ 361
    10 KB (1,547 words) - 03:20, 9 October 2022
  • ...^2 > 999</math> and <math>n > \sqrt{333}</math>. <math>18^2 = 324 < 333 < 361 = 19^2</math>, so we must have <math>n \geq 19</math>. Since we want to mi
    4 KB (673 words) - 18:48, 28 December 2023
  • Since <math>19^2 \equiv 361 \equiv 1 \pmod{180}</math>, multiplying both sides by <math>19</math> yield ...of <math>19</math> modulo <math>180</math> is itself as <math>19^2 \equiv 361 \equiv 1 \pmod {180}</math>, so multiplying this congruence by <math>19</ma
    5 KB (757 words) - 20:59, 23 December 2024
  • <cmath>\tan(\angle M)=\tan (2\cdot \angle AMO)=\frac{38x}{x^{2}-361}.</cmath> <cmath>\frac{38x}{x^{2}-361}=19\cdot \frac{\frac{y}{x}+1}{x}</cmath>
    4 KB (658 words) - 18:15, 19 December 2021
  • <math>m=361803</math>, <math>\dfrac{m}{1000}=361</math> Remainder <math>\boxed{803}</math>.
    2 KB (268 words) - 06:28, 13 September 2020
  • ...E]}{[ABF]}=\left(\frac{AD}{AB}\right)^2=\left(\frac{19}{25}\right)^2=\frac{361}{625}</cmath> <cmath>\frac{[ADE]}{[DEFB]}=\frac{361}{625-361}=\frac{361}{364}</cmath>
    6 KB (897 words) - 16:55, 1 December 2024
  • <math>4 , 9 , 25 , 49 , 121, 169 , 289 , 361 , 529</math> <math>4 , 25 , 121 , 361</math>
    8 KB (1,255 words) - 21:56, 23 October 2024
  • Refer to the diagram in solution 1. <math>4x^2+y^2=361</math> and <math>4y^2+x^2=484</math>, so add them: <math>5x^2+5y^2=845</mat Use the diagram in solution 1. Get <math>4x^2+y^2=361</math> and <math>4y^2+x^2=484</math>, and multiply the second equation by 4
    3 KB (447 words) - 14:02, 17 August 2023
  • \qquad\mathrm{(D)}\ 361
    2 KB (261 words) - 22:34, 18 March 2023
  • ...6}\equiv 0 \pmod{8}</math>, and <math>12^{16}\equiv 144^8\equiv 19^8\equiv 361^4\equiv (-14)^4\equiv 196^2\equiv 71^2\equiv 41 \pmod{125}</math>.
    36 KB (6,214 words) - 19:22, 13 July 2023
  • There are 9: <math>9,25,49,81,121,169,225,289,</math>and <math>361</math>. Therefore, the answer is <math>\boxed{D}</math>.
    2 KB (290 words) - 13:24, 27 June 2021
  • ...than <math>20^2</math> is <math>19^2=361</math>. Therefore <math>k=\sqrt{361}=19</math>. ...fore the last group, we have <math>19*3+1=58</math> terms, and <math>\sqrt{361}</math> is therefore the <math>60</math>th term, and <math>m=60</math>.
    4 KB (641 words) - 23:06, 5 October 2017
  • <math>\textbf{(A) }148\qquad\textbf{(B) }324\qquad\textbf{(C) }361\qquad\textbf{(D) }1296\qquad\textbf{(E) }1369</math>
    12 KB (1,771 words) - 16:24, 14 December 2024
  • ...^2)/(2\cdot 6\cdot 7) = 19/21</math>, so <math>\sin (\angle BCD) = \sqrt{1-361/441} = 4\sqrt{5}/21</math>. Therefore the area of this trapezoid is <math>\
    4 KB (683 words) - 07:03, 6 September 2024
  • *Note: We do not have to worry about the numbers over 360: (<math>361,362,363,364,365</math>) having 2 factors. This is because we can rewrite ...not further divisible by 3 or 4. Therefore, none of the numbers from <math>361-365</math> have 2 factors of <math>3,4,</math> or <math>5</math>, so we can
    3 KB (458 words) - 15:10, 30 August 2023
  • ...bf{(B)}\ 58\qquad\textbf{(C)}\ 81\qquad\textbf{(D)}\ 91\qquad\textbf{(E)}\ 361 </math>
    17 KB (2,633 words) - 14:44, 16 September 2023
  • ...><cmath>\implies |2(1+3+5+7+ \cdots +37)-1-39(37)|</cmath><cmath>\implies |361(2)-1-39(37)|=|722-1-1443|=|-722|\implies \boxed{722}</cmath>
    2 KB (282 words) - 23:26, 8 January 2023
  • 361. Gmaas likes snow. EDIT: Once Gmaas was reincarnated as a polar bear around
    69 KB (11,805 words) - 19:49, 18 December 2019
  • | 47 || pb5754 || 14 || 5054.460 || 361.033 | 51 || illogical_21 || 13 || 4700.523 || 361.579
    187 KB (10,824 words) - 17:27, 3 February 2022

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)