Search results

  • ...62 464 465 466 468 469 470 471 472 473 474 475 476 477 478 480 481 482 483 484 485 486 488 489 490 492 493 494 495 496 497 498 500 501 502 504 505 506 507
    6 KB (350 words) - 11:58, 26 September 2023
  • ...cdot \frac 7{29} = \frac{49}{435}</math>. The answer is <math>m+n = \boxed{484}</math>.
    3 KB (486 words) - 21:15, 7 April 2023
  • BC^2 + CF^2 = B'D^2 + DF^2 &\Longrightarrow BC^2 + 9 = (BC - 15)^2 + 484 \
    9 KB (1,500 words) - 19:06, 8 October 2024
  • <math>49+b^2=(22-b)^2\implies 49+b^2=484-44b+b^2\implies 44b=435\implies b=\frac{435}{44}</math> <cmath>484\cos^2{x}=49+49\sin^2{x}+98\sin{x}.</cmath>
    10 KB (1,590 words) - 13:04, 20 January 2023
  • <cmath>22x + 484 = x^2 + 40x + 400</cmath>
    3 KB (561 words) - 18:25, 27 November 2022
  • ...34\cdot7+21\cdot6+13\cdot5+8\cdot4+5\cdot3+3 \cdot2+2\cdot1+1\cdot0=\boxed{484}</math>. <cmath>609 - 125 = \boxed{484}</cmath>
    2 KB (317 words) - 23:09, 8 January 2024
  • ...\qquad \mathrm{(C) \ }482 \qquad \mathrm{(D) \ }483 \qquad \mathrm{(E) \ }484 </cmath>
    14 KB (2,102 words) - 21:03, 26 October 2018
  • Then, <math>\frac{n_{70}}{k}=k^2+69=484+69=\boxed{553}</math> is the maximum value of <math>\frac{n_i}{k}</math>. (
    3 KB (428 words) - 17:04, 4 December 2020
  • Adding up the three equations gives <math>2(ab + bc + ca) = 152 + 162 + 170 = 484 \Longrightarrow ab + bc + ca = 242</math>. Subtracting each of the above eq
    852 bytes (119 words) - 09:22, 4 July 2013
  • ...to the diagram in solution 1. <math>4x^2+y^2=361</math> and <math>4y^2+x^2=484</math>, so add them: <math>5x^2+5y^2=845</math> and divide by 5: <math>x^2+ ...he diagram in solution 1. Get <math>4x^2+y^2=361</math> and <math>4y^2+x^2=484</math>, and multiply the second equation by 4 to get <math>4x^2+16y^2=1936<
    3 KB (447 words) - 14:02, 17 August 2023
  • ...(A)}\ 425\qquad\textbf{(B)}\ 444\qquad\textbf{(C)}\ 456\qquad\textbf{(D)}\ 484\qquad\textbf{(E)}\ 506 </math>
    16 KB (2,215 words) - 18:18, 10 April 2024
  • ...the increase is <math>300</math>, the percent increase is <math>\frac{300}{484}\times100\%\approx\boxed{\textbf{(E)}\ 62\%}</math>. ...noting that <math>484+150=634=25^2+9</math>. Thus, the answer is <math>784/484-1\approx \boxed{\textbf{(E) } 62\%}</math>.
    3 KB (547 words) - 14:39, 1 December 2024
  • pair i=(534, 342), j=(442,432), k=(374,484), l=(278,501);
    16 KB (2,236 words) - 11:02, 19 February 2024
  • 363 484 605 [3 - 4 - 5] 484 1287 1375 [44 - 117 - 125]
    55 KB (3,566 words) - 10:28, 29 September 2024
  • pair i=(534, 342), j=(442,432), k=(374,484), l=(278,501);
    2 KB (250 words) - 21:17, 5 January 2024
  • ...(A)}\ 425\qquad\textbf{(B)}\ 444\qquad\textbf{(C)}\ 456\qquad\textbf{(D)}\ 484\qquad\textbf{(E)}\ 506 </math>
    2 KB (332 words) - 17:06, 8 November 2024
  • ...}\ 481 \qquad\textbf{(C)}\ 482 \qquad\textbf{(D)}\ 483 \qquad\textbf{(E)}\ 484</math>
    2 KB (323 words) - 16:40, 27 November 2022
  • ...}\ 481 \qquad\textbf{(C)}\ 482 \qquad\textbf{(D)}\ 483 \qquad\textbf{(E)}\ 484</math>
    13 KB (1,994 words) - 00:31, 22 December 2023
  • ...only <math>4</math> and <math>9</math> work. Thus, we see that only <math>484</math> and <math>984</math> work. We order these numbers to get <math>16</math>, <math>484</math>, <math>516</math>, <math>984</math>... We want the <math>10th</math>
    8 KB (1,338 words) - 17:08, 7 September 2024
  • ...ote the radius is r, we can get <cmath>22*2x+440=\sqrt{4x^2-400}\sqrt{4x^2-484}</cmath>, after simple factorization, we can get <cmath>x^4-342x^2-2420x=0< ...ath>x</math>. By Ptolemy's we have <cmath>22(x+20)=\sqrt{x^2-400}\sqrt{x^2-484}</cmath>.
    7 KB (1,212 words) - 21:24, 19 July 2024

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)