Search results

  • [[File:Parallels 2.png|390px|right]] ...ons of <math>p_a</math>, <math>p_b</math>, <math>p_c</math> over the angle bisectors of angles <math>A</math>, <math>B</math>, <math>C</math>, respectively.
    54 KB (9,416 words) - 07:40, 18 April 2024
  • a) <math>XO = ZO, AO = BO, O</math> is the crosspoint of bisectors <math>AB</math> and <math>XZ.</math> <math>XO = ZO, AO = BO \implies O</math> is the crosspoint of bisectors <math>AB</math> and <math>XZ.</math>
    28 KB (4,853 words) - 22:23, 19 November 2024
  • The circumcenter <math>O</math> lies at the intersection of the bisectors <math>AB (c^2(x - y) + z(a^2 - b^2) =0)</math> and <math>AC (b^2(x - z) + y [[File:Fixed point 2.png|350px|right]]
    34 KB (6,882 words) - 13:42, 12 December 2024
  • ==Symmetry with respect angle bisectors== [[File:Bisectors 1.png|350px|right]]
    19 KB (3,291 words) - 12:44, 6 October 2024
  • [[File:Steiner 2.png|400px|right]] ...points <math>Q, Q',</math> and <math>Q''</math> be the crosspoints of the bisectors <math>AD \cap BC, A'D' \cap B'C', A''D'' \cap B''C''.</math>
    14 KB (2,381 words) - 11:07, 12 May 2024
  • [[File:Feuerbach 2.png|500px|right]] The Feuerbach point of a scalene triangle lies on one of its bisectors. Prove that the angle corresponding to the bisector is <math>60^\circ.</mat
    6 KB (1,046 words) - 13:39, 12 December 2024
  • [[File:Butterfly 2.png|450px|right]] .../math> on <math>\pi'</math> is the diameter <math>d' \perp \ell,</math> so bisectors <math>d</math> and <math>d'</math> lies in the plane perpendicular to <math
    39 KB (6,959 words) - 14:26, 3 December 2024
  • ...with <math>\angle A = 60^\circ, AD, BE,</math> and <math>CF</math> be its bisectors, <math>P, Q</math> be the projections of <math>A</math> to <math>EF</math> [[File:2024 final 8 2.png|450px|right]]
    46 KB (7,965 words) - 14:29, 17 November 2024