Search results
Create the page "Homotopy equivalence" on this wiki! See also the search results found.
- ...=q(a)</math>, and <math>g(0,b)=g(1,b)=x</math>. We call <math>g</math> a [[homotopy]]. Now define <math>\pi_1(X)=L/\sim</math>. That is, we equate any two elem Unsurprisingly, the fundamental group is a group. The [[identity]] is the [[equivalence class]] containing the map <math>1:[0,1]\to X</math> given by <math>1(a)=x<3 KB (479 words) - 14:35, 1 December 2015
- ...math>). Now let <math>\pi_1(X,x_0)=\Omega(X,x_0)/\sim</math> be the set of equivalence classes of <math>\Omega(X,x_0)</math> under <math>\sim</math>. ...py from <math>a</math> to <math>a'</math>, then <math>f\circ F</math> is a homotopy from <math>f\circ a</math> to <math>f\circ a'</math>), and thus <math>f_*</8 KB (1,518 words) - 19:11, 23 January 2017