Search results

  • ...ed States at the [[International Mathematics Olympiad]] (IMO). While most AIME participants are high school students, some bright middle school students a High scoring AIME students are invited to take the prestigious [[United States of America Mat
    8 KB (1,062 words) - 18:04, 17 January 2025
  • ...administered by the [[American Mathematics Competitions]] (AMC). [[Art of Problem Solving]] (AoPS) is a proud sponsor of the AMC and of the recent expansion ...9|breakdown=<u>Problem 1/4</u>: 7<br><u>Problem 2/5</u>: 8<br><u>Problem 3/6</u>: 9}}
    6 KB (874 words) - 22:02, 10 November 2024
  • ...A number of '''Mock AMC''' competitions have been hosted on the [[Art of Problem Solving]] message boards. They are generally made by one community member ...AMC]] competition. There is no guarantee that community members will make Mock AMCs in any given year, but there probably will be one.
    51 KB (6,175 words) - 20:41, 27 November 2024
  • The '''Mock AIME 2 Pre 2005''' was written by [[Art of Problem Solving]] community member Mildorf. * [[Mock AIME 2 Pre 2005 Problems|Entire Exam]]
    2 KB (181 words) - 09:58, 18 March 2015
  • The '''Mock AIME 7 Pre 2005''' was written by [[Art of Problem Solving]] community member Mildorf. * [[Mock AIME 7 Pre 2005 Problems|Entire Exam]]
    1 KB (146 words) - 15:33, 14 October 2022
  • The '''Mock AIME 1 2005-2006''' was written by [[Art of Problem Solving]] community member paladin8. * [[Mock AIME 1 2005-2006/Answer Key|Answer Key]]
    1 KB (135 words) - 16:41, 21 January 2017
  • == Problem 1 == [[Mock AIME 1 Pre 2005 Problems/Problem 1|Solution]]
    6 KB (1,100 words) - 21:35, 9 January 2016
  • ==Problem 1== [[Mock AIME 3 Pre 2005/Problem 1|Solution]]
    7 KB (1,135 words) - 22:53, 24 March 2019
  • ==Problem== === Solution 1 (recursive) ===
    5 KB (795 words) - 15:03, 17 October 2021
  • ==Problem== ...diagonals of <math>ABCD</math> intersect at <math>P</math>. If <math>AB = 1, CD = 4,</math> and <math>BP : DP = 3 : 8,</math> then the area of the insc
    2 KB (330 words) - 09:23, 4 April 2012
  • ==Problem== Here are some thoughts on the problem:
    3 KB (520 words) - 11:55, 11 January 2019
  • ==Problem== <math>\{A_n\}_{n \ge 1}</math> is a sequence of positive integers such that
    2 KB (306 words) - 09:36, 4 April 2012
  • ==Problem== ...> at <math>C</math> and <math>D</math> respectively. If <math>AD = 3, AP = 6, DP = 4,</math> and <math>PQ = 32</math>, then the area of triangle <math>P
    3 KB (563 words) - 01:05, 25 November 2023
  • ...ath> is divided by <math>2^{101}+2^{51}+1</math>? ([[2020 AMC 10B Problems/Problem 22|2020 AMC 10B, #22]]) ...^4+324)(40^4+324)(52^4+324)}</math>. ([[1987 AIME Problems/Problem 14|1987 AIME, #14]])
    2 KB (225 words) - 04:42, 30 January 2025
  • == Problem == ...r the tens and units digits. Thus the sum of the hundreds places is <math>(1+2+3+\cdots+9)(72) \times 100 = 45 \cdot 72 \cdot 100 = 324000</math>.
    1 KB (194 words) - 12:44, 5 September 2012
  • == Problem == When <math>1 + 7 + 7^2 + \cdots + 7^{2004}</math> is divided by <math>1000</math>, a rem
    685 bytes (81 words) - 09:51, 11 June 2013
  • == Problem == ...</tt>s amongst the middle five numbers, and so there are <math>6-(5-k) = k+1</math> <tt>C</tt>s amongst the first four numbers.
    1 KB (221 words) - 16:27, 23 February 2013
  • == Problem == <cmath> \frac{1}{p} + \frac{1}{q} + \frac{1}{r} + \frac{360}{pqr} = 1</cmath>
    864 bytes (127 words) - 20:47, 21 February 2010
  • == Problem == ...top of the frustum is a rectangle <math>A'B'C'D'</math> with <math>A'B' = 6</math> and <math>B'C' = 8</math>.
    3 KB (446 words) - 23:18, 9 February 2020
  • == Problem 1 == <cmath>6g(1 + (1/y)) + 12g(y + 1) = \log_{10} y</cmath>
    6 KB (909 words) - 06:27, 12 October 2022

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)