Search results
Create the page "Mock AIME 4 2005-2006/Problem 11" on this wiki! See also the search results found.
- ...A number of '''Mock AMC''' competitions have been hosted on the [[Art of Problem Solving]] message boards. They are generally made by one community member ...AMC]] competition. There is no guarantee that community members will make Mock AMCs in any given year, but there probably will be one.51 KB (6,175 words) - 20:41, 27 November 2024
- The '''Mock AIME 2 Pre 2005''' was written by [[Art of Problem Solving]] community member Mildorf. * [[Mock AIME 2 Pre 2005 Problems|Entire Exam]]2 KB (181 words) - 09:58, 18 March 2015
- The '''Mock AIME 7 Pre 2005''' was written by [[Art of Problem Solving]] community member Mildorf. * [[Mock AIME 7 Pre 2005 Problems|Entire Exam]]1 KB (146 words) - 15:33, 14 October 2022
- The '''Mock AIME 1 2005-2006''' was written by [[Art of Problem Solving]] community member paladin8. * [[Mock AIME 1 2005-2006/Answer Key|Answer Key]]1 KB (135 words) - 16:41, 21 January 2017
- == Problem 1 == [[Mock AIME 1 Pre 2005 Problems/Problem 1|Solution]]6 KB (1,100 words) - 21:35, 9 January 2016
- ==Problem 1== [[Mock AIME 3 Pre 2005/Problem 1|Solution]]7 KB (1,135 words) - 22:53, 24 March 2019
- ==Problem== Here are some thoughts on the problem:3 KB (520 words) - 11:55, 11 January 2019
- ==Problem== Therefore we have <math>a_n \equiv 6\cdot 16 - 4^2 - 4\cdot 4 - 6 = \boxed{058} \pmod{1000}</math>.2 KB (306 words) - 09:36, 4 April 2012
- == Problem == So all of the prime numbers less than <math>50</math> are <math>2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,</math> and <math>47</math>. So we just2 KB (209 words) - 11:43, 10 August 2019
- == Problem 1 == [[Mock AIME 5 Pre 2005 Problems/Problem 1|Solution]]6 KB (909 words) - 06:27, 12 October 2022
- == Problem == Let <math>m = 101^4 + 256</math>. Find the sum of the digits of <math>m</math>.517 bytes (55 words) - 19:01, 23 March 2017
- ...h> objects in <math>3</math> bins. The number of ways to do such is <math>{4+3-1 \choose 3-1} = {6 \choose 2} = 15</math>. ...ach urn, then there would be <math>{n \choose k}</math> possibilities; the problem is that you can repeat urns, so this does not work.<math>n</math> and then5 KB (795 words) - 16:39, 31 December 2024
- == Problem == ...{6}</math>. Thus, the area of <math>ABCD</math> is <math>(10\sqrt{6} + 23)(4\sqrt{6}) = 92\sqrt{6} + 240</math>, and our final answer is <math>92 + 6 +2 KB (376 words) - 21:41, 26 December 2016
- == Problem == So, <math>DE=4</math>.2 KB (294 words) - 15:24, 24 August 2022
- ==Problem 1== [[Mock AIME 4 Pre 2005/Problems/Problem 1 | Solution]]7 KB (1,094 words) - 14:39, 24 March 2019
- == Problem 1 == [[Mock AIME 2 Pre 2005 Problems/Problem 1|Solution]]6 KB (1,052 words) - 12:52, 9 June 2020
- == Problem == ...7 \cdot 3^3 \cdot 37,</cmath> the number <math>10^{12} -1</math> has <math>4 \cdot 2^6 = 256</math> divisors and our answer is <math>256 - 1 = \boxed{251 KB (171 words) - 16:38, 4 August 2019
- == Problem == k_{4} = {3^3}...</cmath>2 KB (232 words) - 23:22, 31 December 2020