Search results

  • The '''Mock AIME 2 Pre 2005''' was written by [[Art of Problem Solving]] community member Mildorf. * [[Mock AIME 2 Pre 2005 Problems|Entire Exam]]
    2 KB (181 words) - 09:58, 18 March 2015
  • The '''Mock AIME 7 Pre 2005''' was written by [[Art of Problem Solving]] community member Mildorf. * [[Mock AIME 7 Pre 2005 Problems|Entire Exam]]
    1 KB (146 words) - 15:33, 14 October 2022
  • == Problem 1 == [[Mock AIME 1 Pre 2005 Problems/Problem 1|Solution]]
    6 KB (1,100 words) - 21:35, 9 January 2016
  • ==Problem== <cmath>\zeta_1^3+\zeta_2^3+\zeta_3^3=7</cmath>
    2 KB (221 words) - 01:49, 19 March 2015
  • == Problem 1 == [[Mock AIME 5 Pre 2005 Problems/Problem 1|Solution]]
    6 KB (909 words) - 06:27, 12 October 2022
  • == Problem == ...0657, \end{aligned}</math> and so the sum of the digits is <math>1+4+6+6+5+7 = \boxed{29}.</math>
    517 bytes (55 words) - 19:01, 23 March 2017
  • ==Problem 1== For how many integers <math>n>1</math> is it possible to express <math>2005</math> as the sum of <math>n</math> distinct positive integers?
    7 KB (1,094 words) - 14:39, 24 March 2019
  • == Problem 1 == [[Mock AIME 2 Pre 2005 Problems/Problem 1|Solution]]
    6 KB (1,052 words) - 12:52, 9 June 2020
  • == Problem == ...+ 1)(10^3 + 1)(10^3 - 1) = 101 \cdot 9901 \cdot 37 \cdot 11 \cdot 13 \cdot 7 \cdot 3^3 \cdot 37,</cmath> the number <math>10^{12} -1</math> has <math>4
    1 KB (171 words) - 16:38, 4 August 2019
  • == Problem == <cmath>k_{1997}={3^{11}}+{3^{10}}+{3^9}+{3^8}+{3^7}+{3^4}+{3^3}+{3^1}.</cmath>
    2 KB (232 words) - 23:22, 31 December 2020