Difference between revisions of "1980 AHSME Problems"

m (Problem 6)
m (Problem 29)
Line 325: Line 325:
 
How many ordered triples (x,y,z) of integers satisfy the system of equations below?  
 
How many ordered triples (x,y,z) of integers satisfy the system of equations below?  
  
<cmath>\begin{array}{l} x^2-3xy+2yz-z^2=31 \ -x^2+6yz+2z^2=44 \ x^2+xy+8z^2=100\ \end{array} </cmath>
+
<cmath>\begin{array}{l} x^2-3xy+2y^2-z^2=31 \ -x^2+6yz+2z^2=44 \ x^2+xy+8z^2=100\ \end{array} </cmath>
  
 
<math>\text{(A)} \ 0 \qquad  
 
<math>\text{(A)} \ 0 \qquad  

Revision as of 17:31, 6 January 2019

Problem 1

The largest whole number such that seven times the number is less than $100$ is

$\text{(A)} \ 12 \qquad \text{(B)} \ 13 \qquad \text{(C)} \ 14 \qquad \text{(D)} \ 15 \qquad \text{(E)} \ 16$

Solution

Problem 2

The degree of $(x^2+1)^4 (x^3+1)^3$ as a polynomial in $x$ is

$\text{(A)} \ 5 \qquad \text{(B)} \ 7 \qquad \text{(C)} \ 12 \qquad \text{(D)} \ 17 \qquad \text{(E)} \ 72$

Solution

Problem 3

If the ratio of $2x-y$ to $x+y$ is $\frac{2}{3}$, what is the ratio of $x$ to $y$?

$\text{(A)} \ \frac{1}{5} \qquad \text{(B)} \ \frac{4}{5} \qquad \text{(C)} \ 1 \qquad \text{(D)} \ \frac{6}{5} \qquad \text{(E)} \ \frac{5}{4}$

Solution

Problem 4

In the adjoining figure, CDE is an equilateral triangle and ABCD and DEFG are squares. The measure of $\angle GDA$ is

$\text{(A)} \ 90^\circ \qquad \text{(B)} \ 105^\circ \qquad \text{(C)} \ 120^\circ \qquad \text{(D)} \ 135^\circ \qquad \text{(E)} \ 150^\circ$

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair D=origin, C=D+dir(240), E=D+dir(300), F=E+dir(30), G=D+dir(30), A=D+dir(150), B=C+dir(150); draw(E--D--G--F--E--C--D--A--B--C); pair point=(0,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(-15)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$G$", G, dir(point--G));[/asy]

Solution

Problem 5

If $AB$ and $CD$ are perpendicular diameters of circle $Q$, $P$ in $\overline{AQ}$, and $\measuredangle QPC = 60^\circ$, then the length of $PQ$ divided by the length of $AQ$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0); draw(P--C--D^^A--B^^Circle(Q,1)); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$D$", D, S); label("$P$", P, S); label("$Q$", Q, SE); label("$60^\circ$", P+0.0.5*dir(30), dir(30));[/asy]

$\text{(A)} \ \frac{\sqrt{3}}{2} \qquad \text{(B)} \ \frac{\sqrt{3}}{3} \qquad \text{(C)} \ \frac{\sqrt{2}}{2} \qquad \text{(D)} \ \frac12 \qquad \text{(E)} \ \frac23$

Solution

Problem 6

A positive number $x$ satisfies the inequality $\sqrt{x} < 2x$ if and only if

$\text{(A)} \ x > \frac{1}{4} \qquad \text{(B)} \ x > 2 \qquad \text{(C)} \ x > 4 \qquad \text{(D)} \ x < \frac{1}{4}\qquad \text{(E)} \ x < 4$

Solution

Problem 7

Sides $AB,BC,CD$ and $DA$ of convex polygon $ABCD$ have lengths 3,4,12, and 13, respectively, and $\measuredangle CBA$ is a right angle. The area of the quadrilateral is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); real r=degrees((12,5)), s=degrees((3,4)); pair D=origin, A=(13,0), C=D+12*dir(r), B=A+3*dir(180-(90-r+s)); draw(A--B--C--D--cycle); markscalefactor=0.05; draw(rightanglemark(A,B,C)); pair point=incenter(A,C,D); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$3$", A--B, dir(A--B)*dir(-90)); label("$4$", B--C, dir(B--C)*dir(-90)); label("$12$", C--D, dir(C--D)*dir(-90)); label("$13$", D--A, dir(D--A)*dir(-90));[/asy]

$\text{(A)} \ 32 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 39 \qquad \text{(D)} \ 42 \qquad \text{(E)} \ 48$

Solution

Problem 8

How many pairs $(a,b)$ of non-zero real numbers satisfy the equation

\[\frac{1}{a} + \frac{1}{b} = \frac{1}{a+b}\] $\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0$ $\text{(E)} \ \text{two pairs for each} ~b \neq 0$

Solution

Problem 9

A man walks $x$ miles due west, turns $150^\circ$ to his left and walks 3 miles in the new direction. If he finishes a a point $\sqrt{3}$ from his starting point, then $x$ is

$\text{(A)} \ \sqrt 3 \qquad \text{(B)} \ 2\sqrt{5} \qquad \text{(C)} \ \frac 32 \qquad \text{(D)} \ 3 \qquad \text{(E)} \ \text{not uniquely determined}$

Solution

Problem 10

The number of teeth in three meshed gears $A$, $B$, and $C$ are $x$, $y$, and $z$, respectively. (The teeth on all gears are the same size and regularly spaced.) The angular speeds, in revolutions per minutes of $A$, $B$, and $C$ are in the proportion

$\text{(A)} \ x: y: z ~~\text{(B)} \ z: y: x ~~ \text{(C)} \ y: z: x~~ \text{(D)} \ yz: xz: xy ~~ \text{(E)} \ xz: yx: zy$

Solution

Problem 11

If the sum of the first $10$ terms and the sum of the first $100$ terms of a given arithmetic progression are $100$ and $10$, respectively, then the sum of first $110$ terms is:

$\text{(A)} \ 90 \qquad \text{(B)} \ -90 \qquad \text{(C)} \ 110 \qquad \text{(D)} \ -110 \qquad \text{(E)} \ -100$

Solution

Problem 12

The equations of $L_1$ and $L_2$ are $y=mx$ and $y=nx$, respectively. Suppose $L_1$ makes twice as large of an angle with the horizontal (measured counterclockwise from the positive x-axis ) as does $L_2$, and that $L_1$ has 4 times the slope of $L_2$. If $L_1$ is not horizontal, then $mn$ is

$\text{(A)} \ \frac{\sqrt{2}}{2} \qquad \text{(B)} \ -\frac{\sqrt{2}}{2} \qquad \text{(C)} \ 2 \qquad \text{(D)} \ -2 \qquad \text{(E)} \ \text{not uniquely determined}$

Solution

Problem 13

A bug (of negligible size) starts at the origin on the coordinate plane. First, it moves one unit right to $(1,0)$. Then it makes a $90^\circ$ counterclockwise and travels $\frac 12$ a unit to $\left(1, \frac 12 \right)$. If it continues in this fashion, each time making a $90^\circ$ degree turn counterclockwise and traveling half as far as the previous move, to which of the following points will it come closest?

$\text{(A)} \ \left(\frac 23, \frac 23 \right) \qquad \text{(B)} \ \left( \frac 45, \frac 25 \right) \qquad \text{(C)} \ \left( \frac 23, \frac 45 \right) \qquad \text{(D)} \ \left(\frac 23, \frac 13 \right) \qquad \text{(E)} \ \left(\frac 25, \frac 45 \right)$

Solution

Problem 14

If the function $f$ is defined by \[f(x)=\frac{cx}{2x+3} ,\quad x\neq -\frac{3}{2} ,\] satisfies $x=f(f(x))$ for all real numbers $x$ except $-\frac{3}{2}$, then $c$ is

$\text{(A)} \ -3 \qquad  \text{(B)} \ - \frac{3}{2} \qquad  \text{(C)} \ \frac{3}{2} \qquad  \text{(D)} \ 3 \qquad  \text{(E)} \ \text{not uniquely determined}$

Solution

Problem 15

A store prices an item in dollars and cents so that when 4% sales tax is added, no rounding is necessary because the result is exactly $n$ dollars where $n$ is a positive integer. The smallest value of $n$ is

$\text{(A)} \ 1 \qquad \text{(B)} \ 13 \qquad \text{(C)} \ 25 \qquad \text{(D)} \ 26 \qquad \text{(E)} \ 100$

Solution

Problem 16

Four of the eight vertices of a cube are the vertices of a regular tetrahedron. Find the ratio of the surface area of the cube to the surface area of the tetrahedron.

$\text{(A)} \ \sqrt 2 \qquad \text{(B)} \ \sqrt 3 \qquad \text{(C)} \ \sqrt{\frac{3}{2}} \qquad \text{(D)} \ \frac{2}{\sqrt{3}} \qquad \text{(E)} \ 2$

Solution

Problem 17

Given that $i^2=-1$, for how many integers $n$ is $(n+i)^4$ an integer?

$\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ 3 \qquad \text{(E)} \ 4$

Solution

Problem 18

If $b>1$, $\sin x>0$, $\cos x>0$, and $\log_b \sin x = a$, then $\log_b \cos x$ equals

$\text{(A)} \ 2\log_b(1-b^{a/2}) ~~\text{(B)} \ \sqrt{1-a^2} ~~\text{(C)} \ b^{a^2} ~~\text{(D)} \ \frac 12 \log_b(1-b^{2a}) ~~\text{(E)} \ \text{none of these}$

Solution

Problem 19

Let $C_1, C_2$ and $C_3$ be three parallel chords of a circle on the same side of the center. The distance between $C_1$ and $C_2$ is the same as the distance between $C_2$ and $C_3$. The lengths of the chords are $20, 16$, and $8$. The radius of the circle is

$\text{(A)} \ 12 \qquad  \text{(B)} \ 4\sqrt{7} \qquad  \text{(C)} \ \frac{5\sqrt{65}}{3} \qquad  \text{(D)}\ \frac{5\sqrt{22}}{2}\qquad \text{(E)}\ \text{not uniquely determined}$

Solution

Problem 20

A box contains $2$ pennies, $4$ nickels, and $6$ dimes. Six coins are drawn without replacement, with each coin having an equal probability of being chosen. What is the probability that the value of coins drawn is at least $50$ cents?

$\text{(A)} \ \frac{37}{924} \qquad  \text{(B)} \ \frac{91}{924} \qquad  \text{(C)} \ \frac{127}{924} \qquad  \text{(D)}\ \frac{132}{924}\qquad \text{(E)}\ \text{none of these}$

Solution

Problem 21

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, C=(15,3), D=(5,1), A=7*dir(72)*dir(B--C), E=midpoint(A--C), F=intersectionpoint(A--D, B--E); draw(E--B--A--C--B^^A--D); label("$A$", A, dir(D--A)); label("$B$", B, dir(E--B)); label("$C$", C, dir(0)); label("$D$", D, SE); label("$E$", E, N); label("$F$", F, dir(80));[/asy]

In triangle $ABC$, $\measuredangle CBA=72^\circ$, $E$ is the midpoint of side $AC$, and $D$ is a point on side $BC$ such that $2BD=DC$; $AD$ and $BE$ intersect at $F$. The ratio of the area of triangle $BDF$ to the area of quadrilateral $FDCE$ is

$\text{(A)} \ \frac 15 \qquad  \text{(B)} \ \frac 14 \qquad  \text{(C)} \ \frac 13 \qquad  \text{(D)}\ \frac{2}{5}\qquad \text{(E)}\ \text{none of these}$

Solution

Problem 22

For each real number $x$, let $f(x)$ be the minimum of the numbers $4x+1, x+2$, and $-2x+4$. Then the maximum value of $f(x)$ is

$\text{(A)} \ \frac{1}{3} \qquad  \text{(B)} \ \frac{1}{2} \qquad  \text{(C)} \ \frac{2}{3} \qquad  \text{(D)} \ \frac{5}{2} \qquad  \text{(E)}\ \frac{8}{3}$

Solution

Problem 23

Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where $x$ is a real number such that $0<x<\frac{\pi}{2}$. The length of the hypotenuse is

$\text{(A)} \ \frac{4}{3} \qquad  \text{(B)} \ \frac{3}{2} \qquad  \text{(C)} \ \frac{3\sqrt{5}}{5} \qquad  \text{(D)}\ \frac{2\sqrt{5}}{3}\qquad \text{(E)}\ \text{not uniquely determined}$

Solution

Problem 24

For some real number $r$, the polynomial $8x^3-4x^2-42x+45$ is divisible by $(x-r)^2$. Which of the following numbers is closest to $r$?

$\text{(A)} \ 1.22 \qquad  \text{(B)} \ 1.32 \qquad  \text{(C)} \ 1.42 \qquad  \text{(D)} \ 1.52 \qquad  \text{(E)} \ 1.62$

Solution

Problem 25

In the non-decreasing sequence of odd integers $\{a_1,a_2,a_3,\ldots \}=\{1,3,3,3,5,5,5,5,5,\ldots \}$ each odd positive integer $k$ appears $k$ times. It is a fact that there are integers $b, c$, and $d$ such that for all positive integers $n$, $a_n=b\lfloor \sqrt{n+c} \rfloor +d$, where $\lfloor x \rfloor$ denotes the largest integer not exceeding $x$. The sum $b+c+d$ equals

$\text{(A)} \ 0 \qquad  \text{(B)} \ 1 \qquad  \text{(C)} \ 2 \qquad  \text{(D)} \ 3 \qquad  \text{(E)} \ 4$

Solution

Problem 26

Four balls of radius $1$ are mutually tangent, three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges have length $s$, is circumscribed around the balls. Then $s$ equals

$\text{(A)} \ 4\sqrt 2 \qquad  \text{(B)} \ 4\sqrt 3 \qquad  \text{(C)} \ 2\sqrt 6 \qquad  \text{(D)}\ 1+2\sqrt 6\qquad \text{(E)}\ 2+2\sqrt 6$

Solution

Problem 27

The sum $\sqrt[3] {5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}$ equals

$\text{(A)} \ \frac 32 \qquad  \text{(B)} \ \frac{\sqrt[3]{65}}{4} \qquad  \text{(C)} \ \frac{1+\sqrt[6]{13}}{2} \qquad  \text{(D)}\ \sqrt[3]{2}\qquad \text{(E)}\ \text{none of these}$

Solution

Problem 28

The polynomial $x^{2n}+1+(x+1)^{2n}$ is not divisible by $x^2+x+1$ if $n$ equals

$\text{(A)} \ 17 \qquad  \text{(B)} \ 20 \qquad  \text{(C)} \ 21 \qquad  \text{(D)} \ 64 \qquad  \text{(E)} \ 65$

Solution

Problem 29

How many ordered triples (x,y,z) of integers satisfy the system of equations below?

\[\begin{array}{l} x^2-3xy+2y^2-z^2=31 \\ -x^2+6yz+2z^2=44 \\ x^2+xy+8z^2=100\\ \end{array}\]

$\text{(A)} \ 0 \qquad  \text{(B)} \ 1 \qquad  \text{(C)} \ 2 \qquad  \text{(D)}\ \text{a finite number greater than 2}\qquad \text{(E)}\ \text{infinitely many}$

Solution

Problem 30

A six digit number (base 10) is squarish if it satisfies the following conditions:

(i) none of its digits are zero;

(ii) it is a perfect square; and

(iii) the first of two digits, the middle two digits and the last two digits of the number are all perfect squares when considered as two digit numbers.

How many squarish numbers are there?

$\text{(A)} \ 0 \qquad  \text{(B)} \ 2 \qquad  \text{(C)} \ 3 \qquad  \text{(D)} \ 8 \qquad  \text{(E)} \ 9$

Solution

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
1979 AHSME
Followed by
1981 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png