Difference between revisions of "2018 AIME I Problems/Problem 4"
Awesome1st (talk | contribs) |
Awesome1st (talk | contribs) m |
||
Line 39: | Line 39: | ||
==Solution 2 (Algebra w/ Law of Cosines)== | ==Solution 2 (Algebra w/ Law of Cosines)== | ||
− | As in the diagram, let | + | As in the diagram, let <math>DE = x</math>. Consider point <math>G</math> on the diagram shown above. Our goal is to be able to perform Pythagorean Theorem on <math>DG, GC</math>, and <math>DC</math>. Let <math>GE = 10-x</math>. Therefore, it is trivial to see that <math>GC^2 = \Big(x + \frac{10-x}{2}\Big)^2</math> (leave everything squared so that it cancels nicely at the end). By Pythagorean Theorem on Triangle <math>DGE</math>, we know that <math>DG^2 = x^2 - \Big(\frac{10-x}{2}\Big)^2</math>. Finally, we apply Law of Cosines on Triangle <math>DBC</math>. We know that <math>\cos(\angle DBC) = \frac{3}{5}</math>. Therefore, we get that <math>DC^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5}</math>. We can now do our final calculation: |
<cmath> | <cmath> | ||
DG^2 + GC^2 = DC^2 \implies x^2 - \Big(\frac{10-x}{2}\Big)^2 + \Big(x + \frac{10-x}{2}\Big)^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5} | DG^2 + GC^2 = DC^2 \implies x^2 - \Big(\frac{10-x}{2}\Big)^2 + \Big(x + \frac{10-x}{2}\Big)^2 = (10-x)^2 + 12^2 - 2(12)(10-x)\frac{3}{5} |
Revision as of 00:31, 22 November 2019
Contents
[hide]- 1 Problem 4
- 2 Solution 1 (No Trig)
- 3 Solution 2 (Algebra w/ Law of Cosines)
- 4 Solution 3 (Coordinates)
- 5 Solution 4 (Law of Cosines)
- 6 Solution 5
- 7 Solution 6 (Fastest via Law of Cosines)
- 8 Solution 6 (Easiest way- Coordinates without bash)
- 9 Even Faster Law of Cosines(1 variable equation)
- 10 See Also
Problem 4
In and
. Point
lies strictly between
and
on
and point
lies strictly between
and
on
so that
. Then
can be expressed in the form
, where
and
are relatively prime positive integers. Find
.
Solution 1 (No Trig)
We draw the altitude from to
to get point
. We notice that the triangle's height from
to
is 8 because it is a
Right Triangle. To find the length of
, we let
represent
and set up an equation by finding two ways to express the area. The equation is
, which leaves us with
. We then solve for the length
, which is done through pythagorean theorm and get
=
. We can now see that
is a
Right Triangle. Thus, we set
as
, and yield that
. Now, we can see
=
. Solving this equation, we yield
, or
. Thus, our final answer is
.
~bluebacon008
Solution 2 (Algebra w/ Law of Cosines)
As in the diagram, let . Consider point
on the diagram shown above. Our goal is to be able to perform Pythagorean Theorem on
, and
. Let
. Therefore, it is trivial to see that
(leave everything squared so that it cancels nicely at the end). By Pythagorean Theorem on Triangle
, we know that
. Finally, we apply Law of Cosines on Triangle
. We know that
. Therefore, we get that
. We can now do our final calculation:
After some quick cleaning up, we get
Therefore, our answer is
.
~awesome1st
Solution 3 (Coordinates)
Let ,
, and
. Then, let
be in the interval
and parametrically define
and
as
and
respectively. Note that
, so
. This means that
However, since
is extraneous by definition,
~ mathwiz0803
Solution 4 (Law of Cosines)
As shown in the diagram, let denote
. Let us denote the foot of the altitude of
to
as
. Note that
can be expressed as
and
is a
triangle . Therefore,
and
. Before we can proceed with the Law of Cosines, we must determine
. Using LOC, we can write the following statement:
Thus, the desired answer is
~ blitzkrieg21
Solution 5
In isosceles triangle, draw the altitude from onto
. Let the point of intersection be
. Clearly,
, and hence
.
Now, we recognise that the perpendicular from onto
gives us two
-
-
triangles. So, we calculate
and
. And hence,
Inspecting gives us
Solving the equation
gives
~novus677
Solution 6 (Fastest via Law of Cosines)
We can have 2 Law of Cosines applied on (one from
and one from
),
and
Solving for in both equations, we get
and
, so the answer is
-RootThreeOverTwo
Solution 6 (Easiest way- Coordinates without bash)
Let , and
. From there, we know that
, so line
is
. Hence,
for some
, and
so
. Now, notice that by symmetry,
, so
. Because
, we now have
, which simplifies to
, so
, and
.
It follows that
, and our answer is
.
-Stormersyle
Even Faster Law of Cosines(1 variable equation)
Doing law of cosines we know that is
* Dropping the perpendicular from
to
we get that
Solving for
we get
so our answer is
.
-harsha12345
- It is good to remember that doubling the smallest angle of a 3-4-5 triangle gives the larger (not right) angle in a 7-24-25 triangle.
See Also
2018 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.