Difference between revisions of "Newton's Sums"
m (→Example) |
(→Practice) |
||
Line 100: | Line 100: | ||
==Practice== | ==Practice== | ||
− | 2019 AMC 12A | + | [https://artofproblemsolving.com/wiki/index.php/2019_AMC_12A_Problems/Problem_17 2019 AMC 12A Problem 17] |
==See Also== | ==See Also== |
Revision as of 12:59, 31 July 2020
Newton sums give us a clever and efficient way of finding the sums of roots of a polynomial raised to a power. They can also be used to derive several factoring identities.
Contents
[hide]Statement
Consider a polynomial of degree ,
Let have roots . Define the following sums:
Newton sums tell us that,
(Define for .)
We also can write:
etc., where denotes the -th elementary symmetric sum.
Proof
Let be the roots of a given polynomial . Then, we have that
Thus,
Multiplying each equation by , respectively,
Sum,
Therefore,
Example
For a more concrete example, consider the polynomial . Let the roots of be and . Find and .
Newton's Sums tell us that:
Solving, first for , and then for the other variables, yields,
Which gives us our desired solutions, and .