Difference between revisions of "2019 AIME I Problems"

m (Problem 6)
 
(23 intermediate revisions by 13 users not shown)
Line 1: Line 1:
 +
{{AIME Problems|year=2019|n=I}}
 +
 
==Problem 1==
 
==Problem 1==
  
 
Consider the integer <cmath>N = 9 + 99 + 999 + 9999 + \cdots + \underbrace{99\ldots 99}_\text{321 digits}.</cmath>Find the sum of the digits of <math>N</math>.
 
Consider the integer <cmath>N = 9 + 99 + 999 + 9999 + \cdots + \underbrace{99\ldots 99}_\text{321 digits}.</cmath>Find the sum of the digits of <math>N</math>.
 +
 +
[[2019 AIME I Problems/Problem 1 | Solution]]
  
 
==Problem 2==
 
==Problem 2==
  
Jenn randomly chooses a number <math>J</math> from <math>1, 2, 3,\ldots, 19, 20</math>. Bela then randomly chooses a number <math>B</math> from <math>1, 2, 3,\ldots, 19, 20</math> distinct from <math>J</math>. The value of <math>B - J</math> is at least <math>2</math> with a probability that can be expressed in the form <math>\frac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
+
Jenn randomly chooses a number <math>J</math> from <math>1, 2, 3,\ldots, 19, 20</math>. Bela then randomly chooses a number <math>B</math> from <math>1, 2, 3,\ldots, 19, 20</math> distinct from <math>J</math>. The value of <math>B - J</math> is at least <math>2</math> with a probability that can be expressed in the form <math>\tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 2 | Solution]]
  
 
==Problem 3==
 
==Problem 3==
  
 
In <math>\triangle PQR</math>, <math>PR=15</math>, <math>QR=20</math>, and <math>PQ=25</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, and points <math>E</math> and <math>F</math> lie on <math>\overline{PR}</math>, with <math>PA=QB=QC=RD=RE=PF=5</math>. Find the area of hexagon <math>ABCDEF</math>.
 
In <math>\triangle PQR</math>, <math>PR=15</math>, <math>QR=20</math>, and <math>PQ=25</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, and points <math>E</math> and <math>F</math> lie on <math>\overline{PR}</math>, with <math>PA=QB=QC=RD=RE=PF=5</math>. Find the area of hexagon <math>ABCDEF</math>.
 +
 +
[[2019 AIME I Problems/Problem 3 | Solution]]
  
 
==Problem 4==
 
==Problem 4==
  
A soccer team has 22 available players. A fixed set of 11 players starts the game, while the other 11 are available as substitutes. During the game, the coach may make as many as 3 substitutions, where any one of the 11 players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let <math>n</math> be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when <math>n</math> is divided by 1000.
+
A soccer team has <math>22</math> available players. A fixed set of <math>11</math> players starts the game, while the other <math>11</math> are available as substitutes. During the game, the coach may make as many as <math>3</math> substitutions, where any one of the <math>11</math> players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let <math>n</math> be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when <math>n</math> is divided by <math>1000</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 4 | Solution]]
  
 
==Problem 5==
 
==Problem 5==
  
A moving particle starts at the point <math>(4,4)</math> and moves until it hits one of the coordinate axes for the first time. When the particle is at the point <math>(a,b)</math>, it moves at random to one of the points <math>(a-1,b)</math>, <math>(a,b-1)</math>, or <math>(a-1,b-1)</math>, each with probability <math>\frac{1}{3}</math>, independently of its previous moves. The probability that it will hit the coordinate axes at <math>(0,0)</math> is <math>\frac{m}{3^n}</math>, where <math>m</math> and <math>n</math> are positive integers. Find <math>m + n</math>.
+
A moving particle starts at the point <math>(4,4)</math> and moves until it hits one of the coordinate axes for the first time. When the particle is at the point <math>(a,b)</math>, it moves at random to one of the points <math>(a-1,b)</math>, <math>(a,b-1)</math>, or <math>(a-1,b-1)</math>, each with probability <math>\tfrac{1}{3}</math>, independently of its previous moves. The probability that it will hit the coordinate axes at <math>(0,0)</math> is <math>\tfrac{m}{3^n}</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>m</math> is not divisible by <math>3</math>. Find <math>m + n</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 5 | Solution]]
  
 
==Problem 6==
 
==Problem 6==
  
In convex quadrilateral <math>KLMN</math> side <math>\overline{MN}</math> is perpendicular to diagonal <math>\overline{KM}</math>, side <math>\overline{KL}</math> is perpendicular to diagonal <math>\overline{LN}</math>, <math>MN = 65</math>, and <math>KL = 28</math>. The line through <math>L</math> perpendicular to side <math>\overline{KN}</math> intersects diagonal <math>\overline{KM}</math> at <math>O</math> with <math>KO = 8</math>. Find <math>MO</math>.
+
In convex quadrilateral <math>KLMN</math>, side <math>\overline{MN}</math> is perpendicular to diagonal <math>\overline{KM}</math>, side <math>\overline{KL}</math> is perpendicular to diagonal <math>\overline{LN}</math>, <math>MN = 65</math>, and <math>KL = 28</math>. The line through <math>L</math> perpendicular to side <math>\overline{KN}</math> intersects diagonal <math>\overline{KM}</math> at <math>O</math> with <math>KO = 8</math>. Find <math>MO</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 6 | Solution]]
  
 
==Problem 7==
 
==Problem 7==
  
 
There are positive integers <math>x</math> and <math>y</math> that satisfy the system of equations
 
There are positive integers <math>x</math> and <math>y</math> that satisfy the system of equations
\begin{align*}
+
<cmath>\log_{10} x + 2 \log_{10} (\gcd(x,y)) = 60</cmath> <cmath>\log_{10} y + 2 \log_{10} (\text{lcm}(x,y)) = 570.</cmath>
\log_{10} x + 2 \log_{10} (\gcd(x,y)) &= 60 \ \log_{10} y + 2 \log_{10} (\text{lcm}(x,y)) &= 570.
+
Let <math>m</math> be the number of (not necessarily distinct) prime factors in the prime factorization of <math>x</math>, and let <math>n</math> be the number of (not necessarily distinct) prime factors in the prime factorization of <math>y</math>. Find <math>3m+2n</math>.
\end{align*}Let <math>m</math> be the number of (not necessarily distinct) prime factors in the prime factorization of <math>x</math>, and let <math>n</math> be the number of (not necessarily distinct) prime factors in the prime factorization of <math>y</math>. Find <math>3m+2n</math>.
+
 
 +
[[2019 AIME I Problems/Problem 7 | Solution]]
  
 
==Problem 8==
 
==Problem 8==
  
Let <math>x</math> be a real number such that <math>\sin^{10}x+\cos^{10} x = \tfrac{11}{36}</math>. Then <math>\sin^{12}x+\cos^{12} x = \tfrac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>
+
Let <math>x</math> be a real number such that <math>\sin^{10}x+\cos^{10} x = \tfrac{11}{36}</math>. Then <math>\sin^{12}x+\cos^{12} x = \tfrac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 8 | Solution]]
 +
 
 +
==Problem 9==
 +
 
 +
Let <math>\tau(n)</math> denote the number of positive integer divisors of <math>n</math>. Find the sum of the six least positive integers <math>n</math> that are solutions to <math>\tau (n) + \tau (n+1) = 7</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 9 | Solution]]
 +
 
 +
==Problem 10==
 +
 
 +
For distinct complex numbers <math>z_1,z_2,\dots,z_{673}</math>, the polynomial
 +
<cmath> (x-z_1)^3(x-z_2)^3 \cdots (x-z_{673})^3 </cmath>
 +
can be expressed as <math>x^{2019} + 20x^{2018} + 19x^{2017}+g(x)</math>, where <math>g(x)</math> is a polynomial with complex coefficients and with degree at most <math>2016</math>. The value of
 +
<cmath> \left| \sum_{1 \le j <k \le 673} z_jz_k \right| </cmath>
 +
can be expressed in the form <math>\tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 10 | Solution]]
 +
 
 +
==Problem 11==
 +
 
 +
In <math>\triangle ABC</math>, the sides have integer lengths and <math>AB=AC</math>. Circle <math>\omega</math> has its center at the incenter of <math>\triangle ABC</math>. An ''excircle'' of <math>\triangle ABC</math> is a circle in the exterior of <math>\triangle ABC</math> that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to <math>\overline{BC}</math> is internally tangent to <math>\omega</math>, and the other two excircles are both externally tangent to <math>\omega</math>. Find the minimum possible value of the perimeter of <math>\triangle ABC</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 11 | Solution]]
 +
 
 +
==Problem 12==
 +
 
 +
Given <math>f(z) = z^2-19z</math>, there are complex numbers <math>z</math> with the property that <math>z</math>, <math>f(z)</math>, and <math>f(f(z))</math> are the vertices of a right triangle in the complex plane with a right angle at <math>f(z)</math>. There are positive integers <math>m</math> and <math>n</math> such that one such value of <math>z</math> is <math>m+\sqrt{n}+11i</math>. Find <math>m+n</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 12 | Solution]]
 +
 
 +
==Problem 13==
 +
 
 +
Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 13 | Solution]]
 +
 
 +
==Problem 14==
 +
 
 +
Find the least odd prime factor of <math>2019^8 + 1</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 14 | Solution]]
 +
 
 +
==Problem 15==
 +
 
 +
Let <math>\overline{AB}</math> be a chord of a circle <math>\omega</math>, and let <math>P</math> be a point on the chord <math>\overline{AB}</math>. Circle <math>\omega_1</math> passes through <math>A</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circle <math>\omega_2</math> passes through <math>B</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>P</math> and <math>Q</math>. Line <math>PQ</math> intersects <math>\omega</math> at <math>X</math> and <math>Y</math>. Assume that <math>AP=5</math>, <math>PB=3</math>, <math>XY=11</math>, and <math>PQ^2 = \tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 
 +
[[2019 AIME I Problems/Problem 15 | Solution]]
 +
 
 +
{{AIME box|year=2019|n=I|before=[[2018 AIME II Problems]]|after=[[2019 AIME II Problems]]}}
 +
{{MAA Notice}}

Latest revision as of 05:57, 4 January 2021

2019 AIME I (Answer Key)
Printable version | AoPS Contest CollectionsPDF

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Consider the integer \[N = 9 + 99 + 999 + 9999 + \cdots + \underbrace{99\ldots 99}_\text{321 digits}.\]Find the sum of the digits of $N$.

Solution

Problem 2

Jenn randomly chooses a number $J$ from $1, 2, 3,\ldots, 19, 20$. Bela then randomly chooses a number $B$ from $1, 2, 3,\ldots, 19, 20$ distinct from $J$. The value of $B - J$ is at least $2$ with a probability that can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 3

In $\triangle PQR$, $PR=15$, $QR=20$, and $PQ=25$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, and points $E$ and $F$ lie on $\overline{PR}$, with $PA=QB=QC=RD=RE=PF=5$. Find the area of hexagon $ABCDEF$.

Solution

Problem 4

A soccer team has $22$ available players. A fixed set of $11$ players starts the game, while the other $11$ are available as substitutes. During the game, the coach may make as many as $3$ substitutions, where any one of the $11$ players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let $n$ be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when $n$ is divided by $1000$.

Solution

Problem 5

A moving particle starts at the point $(4,4)$ and moves until it hits one of the coordinate axes for the first time. When the particle is at the point $(a,b)$, it moves at random to one of the points $(a-1,b)$, $(a,b-1)$, or $(a-1,b-1)$, each with probability $\tfrac{1}{3}$, independently of its previous moves. The probability that it will hit the coordinate axes at $(0,0)$ is $\tfrac{m}{3^n}$, where $m$ and $n$ are positive integers, and $m$ is not divisible by $3$. Find $m + n$.

Solution

Problem 6

In convex quadrilateral $KLMN$, side $\overline{MN}$ is perpendicular to diagonal $\overline{KM}$, side $\overline{KL}$ is perpendicular to diagonal $\overline{LN}$, $MN = 65$, and $KL = 28$. The line through $L$ perpendicular to side $\overline{KN}$ intersects diagonal $\overline{KM}$ at $O$ with $KO = 8$. Find $MO$.

Solution

Problem 7

There are positive integers $x$ and $y$ that satisfy the system of equations \[\log_{10} x + 2 \log_{10} (\gcd(x,y)) = 60\] \[\log_{10} y + 2 \log_{10} (\text{lcm}(x,y)) = 570.\] Let $m$ be the number of (not necessarily distinct) prime factors in the prime factorization of $x$, and let $n$ be the number of (not necessarily distinct) prime factors in the prime factorization of $y$. Find $3m+2n$.

Solution

Problem 8

Let $x$ be a real number such that $\sin^{10}x+\cos^{10} x = \tfrac{11}{36}$. Then $\sin^{12}x+\cos^{12} x = \tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 9

Let $\tau(n)$ denote the number of positive integer divisors of $n$. Find the sum of the six least positive integers $n$ that are solutions to $\tau (n) + \tau (n+1) = 7$.

Solution

Problem 10

For distinct complex numbers $z_1,z_2,\dots,z_{673}$, the polynomial \[(x-z_1)^3(x-z_2)^3 \cdots (x-z_{673})^3\] can be expressed as $x^{2019} + 20x^{2018} + 19x^{2017}+g(x)$, where $g(x)$ is a polynomial with complex coefficients and with degree at most $2016$. The value of \[\left| \sum_{1 \le j <k \le 673} z_jz_k \right|\] can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 11

In $\triangle ABC$, the sides have integer lengths and $AB=AC$. Circle $\omega$ has its center at the incenter of $\triangle ABC$. An excircle of $\triangle ABC$ is a circle in the exterior of $\triangle ABC$ that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to $\overline{BC}$ is internally tangent to $\omega$, and the other two excircles are both externally tangent to $\omega$. Find the minimum possible value of the perimeter of $\triangle ABC$.

Solution

Problem 12

Given $f(z) = z^2-19z$, there are complex numbers $z$ with the property that $z$, $f(z)$, and $f(f(z))$ are the vertices of a right triangle in the complex plane with a right angle at $f(z)$. There are positive integers $m$ and $n$ such that one such value of $z$ is $m+\sqrt{n}+11i$. Find $m+n$.

Solution

Problem 13

Triangle $ABC$ has side lengths $AB=4$, $BC=5$, and $CA=6$. Points $D$ and $E$ are on ray $AB$ with $AB<AD<AE$. The point $F \neq C$ is a point of intersection of the circumcircles of $\triangle ACD$ and $\triangle EBC$ satisfying $DF=2$ and $EF=7$. Then $BE$ can be expressed as $\tfrac{a+b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers such that $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.

Solution

Problem 14

Find the least odd prime factor of $2019^8 + 1$.

Solution

Problem 15

Let $\overline{AB}$ be a chord of a circle $\omega$, and let $P$ be a point on the chord $\overline{AB}$. Circle $\omega_1$ passes through $A$ and $P$ and is internally tangent to $\omega$. Circle $\omega_2$ passes through $B$ and $P$ and is internally tangent to $\omega$. Circles $\omega_1$ and $\omega_2$ intersect at points $P$ and $Q$. Line $PQ$ intersects $\omega$ at $X$ and $Y$. Assume that $AP=5$, $PB=3$, $XY=11$, and $PQ^2 = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
2018 AIME II Problems
Followed by
2019 AIME II Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png