Difference between revisions of "1979 IMO Problems/Problem 1"
(Created page with "==Problem== If <math>p</math> and <math>q</math> are natural numbers so that<cmath> \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, <...") |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
We first write | We first write | ||
− | \begin{align*} | + | <cmath>\begin{align*} |
\frac{p}{q} | \frac{p}{q} | ||
&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}\ | &=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}\ | ||
Line 9: | Line 9: | ||
&=1+\frac{1}{2}+\cdots+\frac{1}{1319}-\left(1+\frac{1}{2}+\cdots+\frac{1}{659}\right)\ | &=1+\frac{1}{2}+\cdots+\frac{1}{1319}-\left(1+\frac{1}{2}+\cdots+\frac{1}{659}\right)\ | ||
&=\frac{1}{660}+\frac{1}{661}+\cdots+\frac{1}{1319} | &=\frac{1}{660}+\frac{1}{661}+\cdots+\frac{1}{1319} | ||
− | \end{align*}Now, observe that | + | \end{align*}</cmath>Now, observe that |
− | \begin{align*} | + | <cmath>\begin{align*} |
\frac{1}{660}+\frac{1}{1319}=\frac{660+1319}{660\cdot 1319}=\frac{1979}{660\cdot 1319} | \frac{1}{660}+\frac{1}{1319}=\frac{660+1319}{660\cdot 1319}=\frac{1979}{660\cdot 1319} | ||
− | \end{align*}and similarly <math>\frac{1}{661}+\frac{1}{1318}=\frac{1979}{661\cdot 1318}</math> and <math>\frac{1}{662}+\frac{1}{1317}=\frac{1979}{662\cdot 1317}</math>, and so on. We see that the original equation becomes | + | \end{align*}</cmath>and similarly <math>\frac{1}{661}+\frac{1}{1318}=\frac{1979}{661\cdot 1318}</math> and <math>\frac{1}{662}+\frac{1}{1317}=\frac{1979}{662\cdot 1317}</math>, and so on. We see that the original equation becomes |
− | \begin{align*} | + | <cmath>\begin{align*} |
\frac{p}{q} | \frac{p}{q} | ||
=\frac{1979}{660\cdot 1319}+\frac{1979}{661\cdot 1318}+\cdots+\frac{1979}{989\cdot 990}=1979\cdot\frac{r}{s} | =\frac{1979}{660\cdot 1319}+\frac{1979}{661\cdot 1318}+\cdots+\frac{1979}{989\cdot 990}=1979\cdot\frac{r}{s} | ||
− | \end{align*}where <math>s=660\cdot 661\cdots 1319</math> and <math>r=\frac{s}{660\cdot 1319}+\frac{s}{661\cdot 1318}+\cdots+\frac{s}{989\cdot 990}</math> are two integers. Finally consider <math>p=1979\cdot\frac{qr}{s}</math>, and observe that <math>s\nmid 1979</math> because <math>1979</math> is a prime, it follows that <math>\frac{qr}{s}\in\mathbb{Z}</math>. Hence we deduce that <math>p</math> is divisible with <math>1979</math>. | + | \end{align*}</cmath>where <math>s=660\cdot 661\cdots 1319</math> and <math>r=\frac{s}{660\cdot 1319}+\frac{s}{661\cdot 1318}+\cdots+\frac{s}{989\cdot 990}</math> are two integers. Finally consider <math>p=1979\cdot\frac{qr}{s}</math>, and observe that <math>s\nmid 1979</math> because <math>1979</math> is a prime, it follows that <math>\frac{qr}{s}\in\mathbb{Z}</math>. Hence we deduce that <math>p</math> is divisible with <math>1979</math>. |
The above solution was posted and copyrighted by Solumilkyu. The original thread for this problem can be found here: [https://aops.com/community/p6171228] | The above solution was posted and copyrighted by Solumilkyu. The original thread for this problem can be found here: [https://aops.com/community/p6171228] | ||
== See Also == {{IMO box|year=1979|before=First question|num-a=2}} | == See Also == {{IMO box|year=1979|before=First question|num-a=2}} |
Latest revision as of 16:12, 29 January 2021
Problem
If and are natural numbers so thatprove that is divisible with .
Solution
We first write Now, observe that and similarly and , and so on. We see that the original equation becomes where and are two integers. Finally consider , and observe that because is a prime, it follows that . Hence we deduce that is divisible with .
The above solution was posted and copyrighted by Solumilkyu. The original thread for this problem can be found here: [1]
See Also
1979 IMO (Problems) • Resources | ||
Preceded by First question |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |