Difference between revisions of "2021 AIME II Problems/Problem 3"
(→Solution) |
MRENTHUSIASM (talk | contribs) (Added in Solution 2.) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Find the number of permutations <math>x_1, x_2, x_3, x_4, x_5</math> of numbers <math>1, 2, 3, 4, 5</math> such that the sum of five products<cmath>x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_1 + x_5x_1x_2</cmath> | + | Find the number of permutations <math>x_1, x_2, x_3, x_4, x_5</math> of numbers <math>1, 2, 3, 4, 5</math> such that the sum of five products <cmath>x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_1 + x_5x_1x_2</cmath> |
− | ==Solution== | + | ==Solution 1== |
Since <math>3</math> is one of the numbers, a product with a <math>3</math> in it is automatically divisible by <math>3</math>, so WLOG <math>x_3=3</math>, we will multiply by <math>5</math> afterward since any of <math>x_1, x_2, ..., x_5</math> would be <math>3</math>, after some cancelation we see that now all we need to find is the number of ways that <math>x_5x_1(x_4+x_2)</math> is divisible by <math>3</math>, since <math>x_5x_1</math> is never divisible by <math>3</math>, now we just need to find the number of ways <math>x_4+x_2</math> is divisible by <math>3</math>, after some calculation you will see that there are <math>16</math> ways to choose <math>x_1, x_2, x_4,</math> and <math>x_5</math> in this way. So the desired answer is <math>16 \times 5=\boxed{080}</math>. | Since <math>3</math> is one of the numbers, a product with a <math>3</math> in it is automatically divisible by <math>3</math>, so WLOG <math>x_3=3</math>, we will multiply by <math>5</math> afterward since any of <math>x_1, x_2, ..., x_5</math> would be <math>3</math>, after some cancelation we see that now all we need to find is the number of ways that <math>x_5x_1(x_4+x_2)</math> is divisible by <math>3</math>, since <math>x_5x_1</math> is never divisible by <math>3</math>, now we just need to find the number of ways <math>x_4+x_2</math> is divisible by <math>3</math>, after some calculation you will see that there are <math>16</math> ways to choose <math>x_1, x_2, x_4,</math> and <math>x_5</math> in this way. So the desired answer is <math>16 \times 5=\boxed{080}</math>. | ||
~ math31415926535 | ~ math31415926535 | ||
+ | |||
+ | ==Solution 2== | ||
+ | The expression <math>x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_1 + x_5x_1x_2</math> has cyclic symmetry. Without the loss of generality, let <math>x_1=3.</math> It follows that <math>x_2,x_3,x_4,x_5</math> are <math>1,2,4,5</math> in some order. In modulo <math>3,</math> they are <math>1,2,1,2</math> in some order. | ||
+ | |||
+ | <b>I am on my way. No edit please. A million thanks.</b> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
==See also== | ==See also== | ||
{{AIME box|year=2021|n=II|num-b=2|num-a=4}} | {{AIME box|year=2021|n=II|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:07, 23 March 2021
Contents
[hide]Problem
Find the number of permutations of numbers such that the sum of five products
Solution 1
Since is one of the numbers, a product with a in it is automatically divisible by , so WLOG , we will multiply by afterward since any of would be , after some cancelation we see that now all we need to find is the number of ways that is divisible by , since is never divisible by , now we just need to find the number of ways is divisible by , after some calculation you will see that there are ways to choose and in this way. So the desired answer is .
~ math31415926535
Solution 2
The expression has cyclic symmetry. Without the loss of generality, let It follows that are in some order. In modulo they are in some order.
I am on my way. No edit please. A million thanks.
~MRENTHUSIASM
See also
2021 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.