Difference between revisions of "2007 USAMO Problems/Problem 5"
m (→Solution: solution 2 by fourierseries) |
m (→Solution) |
||
Line 4: | Line 4: | ||
__TOC__ | __TOC__ | ||
− | == Solution == | + | === Solution 1 === |
− | We | + | We proceed by induction. |
Let <math>\displaystyle{a_{n}}</math> be <math>7^{7^{n}}+1</math>. The result holds for <math>\displaystyle{n=0}</math> because <math>\displaystyle{a_0 = 2^3}</math> is the product of <math>\displaystyle{3}</math> primes. | Let <math>\displaystyle{a_{n}}</math> be <math>7^{7^{n}}+1</math>. The result holds for <math>\displaystyle{n=0}</math> because <math>\displaystyle{a_0 = 2^3}</math> is the product of <math>\displaystyle{3}</math> primes. | ||
− | |||
Now we assume the result holds for <math>\displaystyle{n}</math>. Note that <math>\displaystyle{a_{n}}</math> satisfies the [[recursion]] | Now we assume the result holds for <math>\displaystyle{n}</math>. Note that <math>\displaystyle{a_{n}}</math> satisfies the [[recursion]] | ||
Revision as of 20:27, 7 May 2007
Problem
Prove that for every nonnegative integer , the number is the product of at least (not necessarily distinct) primes.
Contents
[hide]Solution 1
We proceed by induction.
Let be . The result holds for because is the product of primes.
Now we assume the result holds for . Note that satisfies the recursion
Since is an odd power of , is a perfect square. Therefore is a difference of squares and thus composite, i.e. it is divisible by primes. By assumption, is divisible by primes. Thus is divisible by primes as desired.
Solution 2
Notice that . Therefore it suffices to show that is composite.
Let . The expression becomes
which is the shortened form of the geometric series . This can be factored as
Since is an odd power of , is a perfect square, and so we can factor this by difference of squares. Therefore, it is composite.
See also
2007 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |