Difference between revisions of "1982 AHSME Problems/Problem 30"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 9: | Line 9: | ||
== Solution == | == Solution == | ||
− | Let <math>A=15+\sqrt{220}</math> and <math>B=15-\sqrt{220}.</math> Note that <math>A^{19}+B^{19}</math> and <math>A^{82}+B^{82}</math> are both integers: When we expand (Binomial Theorem) and combine like terms for each expression, the rational terms are added and the irrational terms are canceled. We have | + | Let <math>A=15+\sqrt{220}</math> and <math>B=15-\sqrt{220}.</math> Note that <math>A^{19}+B^{19}</math> and <math>A^{82}+B^{82}</math> are both integers: When we expand (Binomial Theorem) and combine like terms for each expression, the rational terms are added and the irrational terms are canceled. |
+ | |||
+ | We have | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
A^{19}+B^{19} &= \left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{1}15^{18}\sqrt{220}^1+\cdots+\binom{19}{19}15^0\sqrt{220}^{19}\right] + \left[\binom{19}{0}15^{19}\sqrt{220}^0-\binom{19}{1}15^{18}\sqrt{220}^1+\cdots-\binom{19}{19}15^0\sqrt{220}^{19}\right] \ | A^{19}+B^{19} &= \left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{1}15^{18}\sqrt{220}^1+\cdots+\binom{19}{19}15^0\sqrt{220}^{19}\right] + \left[\binom{19}{0}15^{19}\sqrt{220}^0-\binom{19}{1}15^{18}\sqrt{220}^1+\cdots-\binom{19}{19}15^0\sqrt{220}^{19}\right] \ | ||
Line 16: | Line 18: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Similarly, we have <cmath>A^{82}+B^{82}=2\left[\binom{82}{0}15^{82}+\binom{82}{2}15^{80}220+\cdots+\binom{82}{82}220^{41}\right].</cmath> | Similarly, we have <cmath>A^{82}+B^{82}=2\left[\binom{82}{0}15^{82}+\binom{82}{2}15^{80}220+\cdots+\binom{82}{82}220^{41}\right].</cmath> | ||
+ | We add the two equations and take modulo <math>10:</math> | ||
+ | <cmath>\begin{align*} | ||
+ | \left(A^{19}+A^{82}\right)+\left(B^{19}+B^{82}\right) &= 2\Biggl[\binom{19}{0}15^{19}+\phantom{ }\underbrace{\binom{19}{2}15^{17}220+\cdots+\binom{19}{18}15^1 220^9}_{0\pmod{10}}\phantom{ }\Biggr]+2\Biggl[\binom{82}{0}15^{82}+\phantom{ }\underbrace{\binom{82}{2}15^{80}220+\cdots+\binom{82}{82}220^{41}}_{0\pmod{10}}\phantom{ }\Biggr] \ | ||
+ | &\equiv 2\left[\binom{19}{0}15^{19}\right]+2\left[\binom{82}{0}15^{82}\right] \ | ||
+ | &\equiv 2\left[5\right]+2\left[5\right] \ | ||
+ | &\equiv 0\pmod{10}. | ||
+ | \end{align*}</cmath> | ||
+ | It is clear that <math>B<0.5,</math> so <math>B^{82}<B^{19}<0.5,</math> from which <math>B^{19}+B^{82}<0.5+0.5=1.</math> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
== See Also == | == See Also == | ||
{{AHSME box|year=1982|num-b=29|after=Last Problem}} | {{AHSME box|year=1982|num-b=29|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:00, 12 September 2021
Problem
Find the units digit of the decimal expansion of
Solution
Let and Note that and are both integers: When we expand (Binomial Theorem) and combine like terms for each expression, the rational terms are added and the irrational terms are canceled.
We have Similarly, we have We add the two equations and take modulo It is clear that so from which
~MRENTHUSIASM
See Also
1982 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.