Difference between revisions of "User:Temperal/Introductory Proportion"

(Problem)
Line 4: Line 4:
 
xy=\frac{1}{k}\
 
xy=\frac{1}{k}\
 
x=ky
 
x=ky
\end{cases}. </cmath>
+
\end{cases} </cmath>
 
Find the possible values of '''k'''.
 
Find the possible values of '''k'''.
  
 
==Solution==
 
==Solution==
 
{{incomplete|solution}}
 
{{incomplete|solution}}
If <math>x=\frac{1} {20}</math>, then <math>\displaystyle  \frac{y} {20} = \frac{1} {k}</math>.
+
If <math>x=\frac{1} {20}</math>, then <math> \frac{y} {20} = \frac{1} {k}</math>.

Revision as of 10:55, 22 September 2007

Problem

Suppose $\frac{1}{20}$ is either x or y in the following system: \[\begin{cases} xy=\frac{1}{k}\\ x=ky \end{cases}\] Find the possible values of k.

Solution

Template:Incomplete If $x=\frac{1} {20}$, then $\frac{y} {20} = \frac{1} {k}$.