Difference between revisions of "2021 Fall AMC 12B Problems/Problem 25"
Kevinmathz (talk | contribs) (→Solution) |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4</math> | <math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4</math> | ||
− | ==Solution== | + | ==Solution 1== |
Note that we can add <math>9</math> to <math>R(n)</math> to get <math>R(n+1)</math>, but must subtract <math>k</math> for all <math>k|n+1</math>. Hence, we see that there are four ways to do that because <math>9=7+2=6+3=5+4=4+3+2</math>. Note that only <math>7+2</math> is a plausible option, since <math>4+3+2</math> indicates <math>n+1</math> is divisible by <math>6</math>, <math>5+4</math> indicates that <math>n+1</math> is divisible by <math>2</math>, <math>6+3</math> indicates <math>n+1</math> is divisibly by <math>2</math>, and <math>9</math> itself indicates divisibility by <math>3</math>, too. So, <math>14|n+1</math> and <math>n+1</math> is not divisibly by any positive integers from <math>2</math> to <math>10</math>, inclusive, except <math>2</math> and <math>7</math>. We check and get that only <math>n+1=14 \cdot 1</math> and <math>n+1=14 \cdot 7</math> give possible solutions so our answer is <math>\boxed{\textbf{(C) }2}</math>. | Note that we can add <math>9</math> to <math>R(n)</math> to get <math>R(n+1)</math>, but must subtract <math>k</math> for all <math>k|n+1</math>. Hence, we see that there are four ways to do that because <math>9=7+2=6+3=5+4=4+3+2</math>. Note that only <math>7+2</math> is a plausible option, since <math>4+3+2</math> indicates <math>n+1</math> is divisible by <math>6</math>, <math>5+4</math> indicates that <math>n+1</math> is divisible by <math>2</math>, <math>6+3</math> indicates <math>n+1</math> is divisibly by <math>2</math>, and <math>9</math> itself indicates divisibility by <math>3</math>, too. So, <math>14|n+1</math> and <math>n+1</math> is not divisibly by any positive integers from <math>2</math> to <math>10</math>, inclusive, except <math>2</math> and <math>7</math>. We check and get that only <math>n+1=14 \cdot 1</math> and <math>n+1=14 \cdot 7</math> give possible solutions so our answer is <math>\boxed{\textbf{(C) }2}</math>. | ||
- kevinmathz | - kevinmathz | ||
+ | |||
+ | == Solution 2 == | ||
+ | Denote by <math>{\rm Rem} \ \left( n, k \right)</math> the remainder of <math>n</math> divided by <math>k</math>. | ||
+ | Define <math>\Delta \left( n, k \right) = {\rm Rem} \ \left( n + 1, k \right) - {\rm Rem} \ \left( n, k \right)</math>. | ||
+ | |||
+ | Hence, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | \Delta \left( n, k \right) | ||
+ | = \left\{ | ||
+ | \begin{array}{ll} | ||
+ | 1 & \mbox{ if } n \not\equiv -1 \pmod{k} \ | ||
+ | - \left( k -1 \right) & \mbox{ if } n \equiv -1 \pmod{k} | ||
+ | \end{array} | ||
+ | \right.. | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Hence, this problem asks us to find all <math>n \in \left\{ 10 , 11, \cdots , 99 \right\}</math>, such that <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>. | ||
+ | |||
+ | <math>\textbf{Case 1}</math>: <math>\Delta \left( n, 10 \right) = - 9</math>. | ||
+ | |||
+ | We have <math>\sum_{k = 2}^9 \Delta \left( n, k \right) \leq \sum_{k = 2}^9 1 = 8</math>. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | <math>\textbf{Case 2}</math>: <math>\Delta \left( n, 10 \right) = 1</math> and <math>\Delta \left( n, 9 \right) = -8</math>. | ||
+ | |||
+ | The condition <math>\Delta \left( n, 9 \right) = -8</math> implies <math>n \equiv - 1 \pmod{9}</math>. | ||
+ | This further implies <math>n \equiv - 1 \pmod{3}</math>. | ||
+ | Hence, <math>\Delta \left( n, 3 \right) = -2</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\sum_{k \in \left\{ 2 , 4 , 5 , 6, 7, 8\right\}} \Delta \left( n, k \right) = 9</math>. | ||
+ | |||
+ | However, we have <math>\sum_{k \in \left\{ 2 , 4 , 5 , 6, 7, 8\right\}} \Delta \left( n, k \right) \leq \sum_{k \in \left\{ 2 , 4 , 5 , 6, 7, 8\right\}} 1 = 6</math>. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | <math>\textbf{Case 3}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 9 , 10 \right\}</math> and <math>\Delta \left( n, 8 \right) = -7</math>. | ||
+ | |||
+ | The condition <math>\Delta \left( n, 8 \right) = -7</math> implies <math>n \equiv - 1 \pmod{k}</math> with <math>k \in \left\{ 2, 4 \right\}</math>. | ||
+ | Hence, <math>\Delta \left( n, 2 \right) = -1</math> and <math>\Delta \left( n, 4 \right) = -3</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\sum_{k \in \left\{ 3, 5, 6, 7 \right\}} \Delta \left( n, k \right) = 9</math>. | ||
+ | |||
+ | However, we have <math>\sum_{k \in \left\{ 3, 5, 6, 7 \right\}} \Delta \left( n, k \right) \leq \sum_{k \in \left\{ 3, 5, 6, 7 \right\}} 1 = 4</math>. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | <math>\textbf{Case 4}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 8, \cdots , 10 \right\}</math> and <math>\Delta \left( n, 7 \right) = -6</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\sum_{k \in \left\{ 2, 3, 4, 5, 6 \right\}} \Delta \left( n, k \right) = 3</math>. | ||
+ | |||
+ | Hence, we must have <math>\Delta \left( n, 2 \right) = -1</math> and <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 3 , 4 , 5 , 6 \right\}</math>. | ||
+ | |||
+ | Therefore, <math>n = 13, 97</math>. | ||
+ | |||
+ | <math>\textbf{Case 5}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 7 , \cdots , 10 \right\}</math> and <math>\Delta \left( n, 6 \right) = -5</math>. | ||
+ | |||
+ | The condition <math>\Delta \left( n, 6 \right) = -5</math> implies <math>n \equiv - 1 \pmod{k}</math> with <math>k \in \left\{ 2, 3 \right\}</math>. | ||
+ | Hence, <math>\Delta \left( n, 2 \right) = -1</math> and <math>\Delta \left( n, 3 \right) = -2</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\sum_{k \in \left\{ 4, 5 \right\}} \Delta \left( n, k \right) = 4</math>. | ||
+ | |||
+ | However, we have <math>\sum_{k \in \left\{ 4, 5 \right\}} \Delta \left( n, k \right) \leq \sum_{k \in \left\{ 4, 5 \right\}} 1 = 2</math>. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | |||
+ | <math>\textbf{Case 6}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 6 , \cdots , 10 \right\}</math> and <math>\Delta \left( n, 5 \right) = -4</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\sum_{k \in \left\{ 2, 3, 4 \right\}} \Delta \left( n, k \right) = -1</math>. | ||
+ | |||
+ | This can be achieved if <math>\Delta \left( n, 2 \right) = 1</math>, <math>\Delta \left( n, 3 \right) = 1</math>, <math>\Delta \left( n, 4 \right) = -3</math>. | ||
+ | |||
+ | However, <math>\Delta \left( n, 4 \right) = -3</math> implies <math>n \equiv - 1 \pmod{4}</math>. This implies <math>n \equiv -1 \pmod{2}</math>. Hence, <math>\Delta \left( n, 2 \right) = -1</math>. | ||
+ | We get a contradiction. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | <math>\textbf{Case 7}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 5 , \cdots , 10 \right\}</math> and <math>\Delta \left( n, 4 \right) = -3</math>. | ||
+ | |||
+ | The condition <math>\Delta \left( n, 4 \right) = -3</math> implies <math>n \equiv - 1 \pmod{k}</math> with <math>k = 2</math>. | ||
+ | Hence, <math>\Delta \left( n, 2 \right) = -1</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\Delta \left( n, 3 \right) = - 2</math>. This implies <math>n \equiv - 1 \pmod{3}</math>. | ||
+ | |||
+ | Because <math>n \equiv - 1 \pmod{2}</math> and <math>n \equiv - 1 \pmod{3}</math>, we have <math>n \equiv - 1 \pmod{6}</math>. | ||
+ | Hence, <math>\Delta \left( n, 6 \right) = - 5</math>. | ||
+ | However, in this case, we assume <math>\Delta \left( n, 6 \right) = 1</math>. | ||
+ | We get a contradiction. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | <math>\textbf{Case 8}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{ 4 , \cdots , 10 \right\}</math> and <math>\Delta \left( n, 3 \right) = -2</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\Delta \left( n, 2 \right) = - 5</math>. This is infeasible. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | <math>\textbf{Case 9}</math>: <math>\Delta \left( n, k \right) = 1</math> for <math>k \in \left\{3 , \cdots , 10 \right\}</math>. | ||
+ | |||
+ | To get <math>\sum_{k = 2}^{10} \Delta \left( n, k \right) = 0</math>, we have <math>\Delta \left( n, 2 \right) = - 8</math>. This is infeasible. | ||
+ | |||
+ | Therefore, there is no <math>n</math> in this case. | ||
+ | |||
+ | Putting all cases together, the answer is <math>\boxed{\textbf{(C) }2}</math>. | ||
+ | |||
+ | ~Steven Chen (www.professorchenedu.com) | ||
{{AMC12 box|year=2021 Fall|ab=B|num-b=24|after=Last problem}} | {{AMC12 box|year=2021 Fall|ab=B|num-b=24|after=Last problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:35, 25 November 2021
Problem
For a positive integer, let be the sum of the remainders when is divided by , , , , , , , , and . For example, . How many two-digit positive integers satisfy
Solution 1
Note that we can add to to get , but must subtract for all . Hence, we see that there are four ways to do that because . Note that only is a plausible option, since indicates is divisible by , indicates that is divisible by , indicates is divisibly by , and itself indicates divisibility by , too. So, and is not divisibly by any positive integers from to , inclusive, except and . We check and get that only and give possible solutions so our answer is .
- kevinmathz
Solution 2
Denote by the remainder of divided by . Define .
Hence,
Hence, this problem asks us to find all , such that .
: .
We have .
Therefore, there is no in this case.
: and .
The condition implies . This further implies . Hence, .
To get , we have .
However, we have .
Therefore, there is no in this case.
: for and .
The condition implies with . Hence, and .
To get , we have .
However, we have .
Therefore, there is no in this case.
: for and .
To get , we have .
Hence, we must have and for .
Therefore, .
: for and .
The condition implies with . Hence, and .
To get , we have .
However, we have .
Therefore, there is no in this case.
: for and .
To get , we have .
This can be achieved if , , .
However, implies . This implies . Hence, . We get a contradiction.
Therefore, there is no in this case.
: for and .
The condition implies with . Hence, .
To get , we have . This implies .
Because and , we have . Hence, . However, in this case, we assume . We get a contradiction.
Therefore, there is no in this case.
: for and .
To get , we have . This is infeasible.
Therefore, there is no in this case.
: for .
To get , we have . This is infeasible.
Therefore, there is no in this case.
Putting all cases together, the answer is .
~Steven Chen (www.professorchenedu.com)
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.