Difference between revisions of "User:Temperal/Introductory Proportion"

(Redirecting to Proportion/Introductory)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[Proportion/Introductory]]
Suppose <math>\frac{1}{20}</math> is either '''x''' or '''y''' in the following system:
 
<cmath>\begin{cases}
 
xy=\frac{1}{k}\
 
x=ky
 
\end{cases} </cmath>
 
Find the possible values of '''k'''.
 
 
 
==Solution==
 
If <math>x=\frac{1}{20}</math>, then <br />
 
:<math>\frac{1}{20}=ky</math> and
 
:<math>\frac{y}{20}=\frac{1}{k}</math><br />
 
Solving gets us:<br />
 
:<math>y=\frac{20}{k}</math>
 
:<math>\frac{1}{20}=k\frac{20}{k}</math>
 
:<math>\frac{1}{20}=20</math><br />
 
Thus, there is no solution when <math>x=\frac{1}{20}</math><br />
 
If <math>y=\frac{1}{20}</math>, then <br />
 
:<math>\frac{x}{20}=\frac{1}{k}</math>
 
:<math>x=\frac{k}{20}</math>
 
:<math>xk=20</math>
 
:<math>\frac{k}{20}\cdot k=20</math>
 
:<math>k^2=400</math>
 
:<math>k=\pm 20</math><br />
 
Thus, the possible values of '''k''' are <math>(20,-20)</math>.
 

Latest revision as of 17:21, 24 September 2007