Difference between revisions of "2014 AMC 10B Problems/Problem 9"
(→Solution) |
(→Solution 2) |
||
Line 9: | Line 9: | ||
==Solution 2== | ==Solution 2== | ||
− | Muliply both sides by <math>\left(\frac{1}{w}-\frac{1}{z}\right)</math> to get <math>\frac{1}{w}+\frac{1}{z}=2014\left(\frac{1}{w}-\frac{1}{z}\right)</math>. Then, add <math>2014\cdot\frac{1}{z}</math> to both sides and subtract <math>\frac{1}{w}</math> from both sides to get <math>2015\cdot\frac{1}{z}=2013\cdot\frac{1}{w}</math>. Then, we can plug in the most simply values for z and w (<math>2015</math> and <math>2013</math>, respectively, and find <math>\frac{2013+2015}{2013-2015}=\frac{2(2014)}{-2}=-2014</math>, | + | Muliply both sides by <math>\left(\frac{1}{w}-\frac{1}{z}\right)</math> to get <math>\frac{1}{w}+\frac{1}{z}=2014\left(\frac{1}{w}-\frac{1}{z}\right)</math>. Then, add <math>2014\cdot\frac{1}{z}</math> to both sides and subtract <math>\frac{1}{w}</math> from both sides to get <math>2015\cdot\frac{1}{z}=2013\cdot\frac{1}{w}</math>. Then, we can plug in the most simply values for z and w (<math>2015</math> and <math>2013</math>, respectively), and find <math>\frac{2013+2015}{2013-2015}=\frac{2(2014)}{-2}=-2014</math>, or answer choice <math>\boxed{A}</math>. |
==Video Solution== | ==Video Solution== |
Revision as of 19:15, 29 May 2022
Contents
[hide]Problem
For real numbers and , What is ?
Solution
Multiply the numerator and denominator of the LHS by to get . Then since and , , or choice .
Solution 2
Muliply both sides by to get . Then, add to both sides and subtract from both sides to get . Then, we can plug in the most simply values for z and w ( and , respectively), and find , or answer choice .
Video Solution
~savannahsolver
See Also
2014 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.