Difference between revisions of "2018 AMC 10B Problems/Problem 17"
m |
(→Solution 3) |
||
Line 22: | Line 22: | ||
== Solution 3 == | == Solution 3 == | ||
Let the octagon's side length be <math>x</math>. Then <math>PH = \frac{6 - x}{2}</math> and <math>PA = \frac{8 - x}{2}</math>. By the Pythagorean theorem, <math>PH^2 + PA^2 = HA^2</math>, so <math>\left(\frac{6 - x}{2} \right)^2 + \left(\frac{8 - x}{2} \right)^2 = x^2</math>. By expanding the left side and combining the like terms, we get <math>\frac{x^2}{2} - 7x + 25 = x^2 \implies -\frac{x^2}{2} - 7x + 25 = 0</math>. Solving this using the quadratic formula, <math>\frac{-b \pm \sqrt{b^2-4ac}}{2a}</math>, we use <math>a = -\frac{1}{2}</math>, <math>b = -7</math>, and <math>c = 25</math>, to get one positive solution, <math>x=-7+3\sqrt{11}</math>, so <math>k+m+n=-7+3+11=\boxed{\textbf{(B) }7}</math> | Let the octagon's side length be <math>x</math>. Then <math>PH = \frac{6 - x}{2}</math> and <math>PA = \frac{8 - x}{2}</math>. By the Pythagorean theorem, <math>PH^2 + PA^2 = HA^2</math>, so <math>\left(\frac{6 - x}{2} \right)^2 + \left(\frac{8 - x}{2} \right)^2 = x^2</math>. By expanding the left side and combining the like terms, we get <math>\frac{x^2}{2} - 7x + 25 = x^2 \implies -\frac{x^2}{2} - 7x + 25 = 0</math>. Solving this using the quadratic formula, <math>\frac{-b \pm \sqrt{b^2-4ac}}{2a}</math>, we use <math>a = -\frac{1}{2}</math>, <math>b = -7</math>, and <math>c = 25</math>, to get one positive solution, <math>x=-7+3\sqrt{11}</math>, so <math>k+m+n=-7+3+11=\boxed{\textbf{(B) }7}</math> | ||
+ | |||
+ | ==Solution 4== | ||
+ | Let <math>AB</math>, or the side of octagon, be <math>x</math>. Then, <math>BQ = \left(\frac{8-x}{2}\right)</math> and <math>CQ = \left(\frac{6-x}{2}\right)</math>. By the Pythagorean Theorem, <math>BQ^2+CQ^2=x^2</math>, or <math>\left(\frac{8-x}{2}\right)^2+\left(\frac{6-x}{2}\right)^2 = x^2</math>. Multiplying this out, we have <math>x^2 = \frac{64-16x+x^2+36-12x+x^2}{4}</math>. Simplifying, <math>-2x^2-28x+100=0</math>. Dividing both sides by <math>-2</math> gives <math>x^2+14x-50=0</math>. Therefore, using the quadratic formula, we have <math>x=-7 \pm 3\sqrt{11}</math>. Since lengths are always positive, then <math>x=-7+3\sqrt{11} \rightarrow k+m+n=-7+3+11=\boxed{\textbf{(B)}\ 7}</math> | ||
+ | |||
+ | ~MrThinker | ||
==Video Solution== | ==Video Solution== |
Revision as of 21:16, 12 October 2022
Contents
[hide]Problem
In rectangle , and . Points and lie on , points and lie on , points and lie on , and points and lie on so that and the convex octagon is equilateral. The length of a side of this octagon can be expressed in the form , where , , and are integers and is not divisible by the square of any prime. What is ?
Solution 1
Let . Then .
Now notice that since we have .
Thus by the Pythagorean Theorem we have which becomes .
Our answer is . (Mudkipswims42)
Solution 2
Denote the length of the equilateral octagon as . The length of can be expressed as . By the Pythagorean Theorem, we find that: Since , we can say that . We can discard the negative solution, so ~ blitzkrieg21
Solution 3
Let the octagon's side length be . Then and . By the Pythagorean theorem, , so . By expanding the left side and combining the like terms, we get . Solving this using the quadratic formula, , we use , , and , to get one positive solution, , so
Solution 4
Let , or the side of octagon, be . Then, and . By the Pythagorean Theorem, , or . Multiplying this out, we have . Simplifying, . Dividing both sides by gives . Therefore, using the quadratic formula, we have . Since lengths are always positive, then
~MrThinker
Video Solution
~IceMatrix
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.