Difference between revisions of "The Apple Method"
(→Examples) |
(→Examples) |
||
Line 40: | Line 40: | ||
3. Evaluate: | 3. Evaluate: | ||
<cmath>\frac{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots}{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots}</cmath> | <cmath>\frac{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots}{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots}</cmath> | ||
+ | |||
+ | <math>\emph{Solution:}</math> | ||
+ | |||
+ | Let <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots</math>. Note that <math>\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\cdots = \left( \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots \right) - \left( \frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\cdots \right) = \textcolor{red}{(\textcolor{green}{^{^(}})} - \frac{1}{2^2}\cdot\textcolor{red}{(\textcolor{green}{^{^(}})} = \frac{3}{4}\cdot\textcolor{red}{(\textcolor{green}{^{^(}})}.</math> | ||
+ | |||
+ | Thus, the answer is <math>\frac{\textcolor{red}{(\textcolor{green}{^{^(}})}}{\frac34\cdot\textcolor{red}{(\textcolor{green}{^{^(}})}}=\boxed{\frac34}.</math> | ||
==Extensions== | ==Extensions== |
Latest revision as of 11:56, 8 November 2022
Contents
[hide]What is the Apple Method?
The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.
Why Apple?
A few reasons:
1. When you use the Apple Method, you can box what you are substituting with the apple. When you use as a substitution, instead of actually boxing it, you are just crossing it out.
2. Apples are easier to draw.
3. Apples are good for you.
4. An Apple a Day Keeps the Doctor Away.
LaTeX code for apple
$(^{^(})$, or if you want some color, $\textcolor{red}{(\textcolor{green}{^{^(}})}$
Examples
1. Evaluate:
If we set , we can see that .
Solving, we get
2. If
Find x.
If we set equal to we get and
Simplifying, we find so
3. Evaluate:
Let . Note that
Thus, the answer is
Extensions
The :) Method
When more than one variable is needed, pears, bananas, stars, and smiley faces are usually used.